Звоните, мы сейчас работаем:
Бесплатный номер 8 (800) 301-99-67
Офис в Москве +7 (499) 403-38-65
Скопировать sale10@vt-metall.ru
sale10@vt-metall.ru
Заказать звонок
Металлообрабатывающая компания VT-METALL
Звоните, мы сейчас работаем
8 (800) 301-99-67 sale10@vt-metall.ru
МЕНЮ
25.09.2022
Свойства металлов
200
Время чтения: 8 минут

Пластичность металлов и факторы, влияющие на нее

Редакция сайта VT-Metall
Сохранить статью:

Из этого материала вы узнаете:

  • Что такое пластичность металлов
  • Зависимость пластичности металлов от химического состава
  • Влияние температуры на пластичность металлов
  • Влияние скорости деформации на пластичность металлов
  • Как напряженное состояние влияет на пластичность металлов
  • Примеры металлов, обладающих высокой пластичностью

Пластичность металлов проявляется под воздействием высокой температуры. При этом материал деформируется или растягивается под воздействием силы, но не разрушается. Это свойство активно применяется при изготовлении разнообразных деталей. 

Высокая пластичность металла характеризуется постепенным разрушением с предварительным образованием изгиба, при низкой – материал ломается внезапно. О том, какими показателями пластичности обладают разные металлы и как это свойство используется в промышленности, расскажем далее.

Что такое пластичность металлов

Рассмотрим для начала определение пластичности металлов. Пластичностью называют способность металлов меняться под воздействием внешних факторов с сохранением изменений после окончания этого влияния. Специалисты называют это свойство обратной упругостью металлов. Высокая пластичность позволяет легко обрабатывать материалы (штамповать, ковать и пр.).

Существует прямая зависимость пластичности от температуры, до которой нагревают материал. Пластичность металлов увеличивается при нагревании, а при уменьшении температуры мягкость снижается. Если вы имеете дело с металлами, показывающими высокую пластичность в условиях комнатной температуры, то существует возможность их разрушения в случае охлаждения ниже нуля градусов по Цельсию.

 

Для большинства металлов характерна пластичность. У одних она высокая – это так называемые пластичные материалы, а у других низкая – это хрупкие. При этом последние не показывают какой-либо деформации при разрушении или перед ним. Хрупким может быть, например, стекло – один из самых часто встречающихся материалов. Или чугун (особенно белый) – это уже металл, причем широкого использования.

При необходимости обработки (изменении формы) пластичность металла будет очень важным свойством. Как на практике можно использовать пластичность металлов? Кузова автомобилей, например, изготавливают из материалов с достаточной пластичностью для того, чтобы была возможность придать им необходимую форму.

Характеристика пластичности металлов прочно связана с соотношением направления, куда была приложена сила, и направления, в котором происходила прокатка материала. Катаные металлы имеют свойство направленности из-за удлинения структурных кристаллов/зерен вдоль прокатки. Соответственно, пластичность будет выше в том же направлении. Это характерно и для листовой стали.

2-min.jpg

В поперечном же направлении прочность материала снижается, иногда до 30 %. Пластичность в том же направлении может упасть на 50 %. А по толщине материала эти свойства падают еще больше. Некоторые виды стали показывают очень низкую пластичность в поперечном направлении. Итак, мы имеем три направления. Им присваиваются следующие обозначения. Продольное (направление прокатки) обозначается X, поперечное – Y, по толщине – Z.

При проведении аттестации сварщиков, к примеру, при проверке навыка загиба листа стали, частенько можно увидеть излом основного металла. Он возникает из-за того, что ось шва идет параллельно с направлением прокатки металла. Несмотря на хорошие характеристики материала в направлении X, возникновение нагрузки в направлении Y или Z способно разрушить металл.

Проверка пластичности происходит с помощью теста на растяжение. Его производят в тот момент, когда испытывают металл на предел его прочности. Выражается данное свойство, как относительные удлинение и сужение сечения материала.

Существует несколько факторов, влияющих на пластичность металлов. Подробнее остановимся на каждом из них.

Зависимость пластичности металлов от химического состава

Высокую пластичность металлов обеспечивает их чистота. Мягкость чистых металлов выше, чем у сплавов. Примером может служить медь, у которой это свойство выше, чем у бронзы (сплав с оловом). Пластичность больше выражена у сплавов, которые создают твердые растворы, нежели у тех, что образуют смеси (механические) и химические соединения. Чем больше разница в пределах текучести и прочности, тем более прочными являются металлы.

3-min.jpg

Пластичность металлов обусловлена в том числе компонентами сплавов:

  1. Высокое содержание углерода приводит к уменьшению пластичности. Если в материале более полутора процентов углерода, то сталь плохо поддается ковке.
  2. Пластичность стали падает с появлением в ее составе кремния. Именно поэтому холодная штамповка и глубокая вытяжка используются для обработки малоуглеродистой стали с небольшим количеством кремния. Это такие марки, как 08кп или 10кп. 
  3. Благодаря ванадию и никелю пластичность легированной стали повышается, а из-за присутствия вольфрама, хрома падает.
  4. Хрупкой сталь делает соединение серы и железа, в результате которого появляется сульфид железа в виде эвтектики. Он размещается на границах зерен и плавится в процессе нагрева до +1 000 С, разрушая связи зерен. Данный процесс получил название красноломкости.
  5. Для нейтрализации негативного воздействия серы используется марганец, который создает тугоплавкое соединение.
  6. Фосфор двояко воздействует на сталь. С одной стороны в металле возрастают пределы текучести/прочности, с другой – появляется хладноломкость из-за снижения пластичности/вязкости металла при низкой температуре.

Крупнозернистая структура литого металла создает более низкую пластичность, а в деформированном мелкозернистом она выше. Пластичность падает из-за присутствия в материале макро- и микротрещин, пор, пузырьков.

Влияние температуры на пластичность металлов

Пластичность металлов во многом зависит от температуры. Но не все так однозначно. Высокие значения повышают пластичность мало- и среднеуглеродистой стали. А, например, высокоуглеродистые более пластичны при низких значениях. При этом для шарикоподшипниковых температура вообще не влияет на пластичность.

4-min.jpg

Существуют также сплавы, у которых пластичность повышается в определенных температурных интервалах. От +800–1 000 °С для технического железа – это температура понижения пластичности металла. А при достижении градуса плавления металла происходит увеличение хрупкости, поскольку возрастает вероятность пережога/перегрева.

У углеродистой стали существует зона синеломкости. Это температура от +100 °С до +300 °С, когда прочность материала увеличивается, а пластичность падает. Объясняется это тем, что малые части карбидов выпадают по направлению плоскости скольжения во время деформации металла. Также уменьшение пластичности происходит при фазовых превращениях.

При излишнем росте зерен в структуре металла пластичность резко уменьшается. Специалисты называют этот процесс перегревом, который исправляется отжигом. Другой процесс – пережог. Это когда на границах зерен появляются оксиды, а также происходит плавление межзеренных прослоек при приближении температуры материала к показателю его плавления. Все это ведет к возникновению трещин и утрате пластичности. Такой процесс невозможно исправить. Материал отдается на переплавку.

Влияние скорости деформации на пластичность металлов

Скорость деформации представляет собой изменение ее степени за определенный промежуток времени. При возрастании скорости происходит падение пластичности. Это особенно заметно в случае с высоколегированной сталью, сплавами меди и магния.

Объясняется это наличием двух разнонаправленных процессов при работе с нагретым материалом. С одной стороны, при деформации происходит его упрочение. С другой – ослабление прочности из-за рекристаллизации. Если мы имеем высокие скорости деформации, то упрочнение происходит быстрее, чем разупрочнение.

Но при еще большей скорости деформации (например, штамповке взрывом), пластичность снова начинает расти. Происходит это по причине увеличения температуры вследствие выработки теплоты при деформации. Она не может столь быстро рассеяться и приводит к возрастанию пластичности.

Как напряженное состояние влияет на пластичность металлов

Напряженное состояние определяется схемой расположения главных напряжений, которые действуют в малых объемах деформируемого металла.

5-min.jpg

Главными напряжениями считаются нормальные, которые действуют на трех площадках, перпендикулярных друг другу, где напряжения по касательной взаимно уничтожаются (0). Существует 9 таких схем. Две из них линейные, три – плоские, четыре – объемные. Обработка давлением приводит к появлению двух объемных схем:

  • Трехосное сжатие – когда напряжения распространяются по трем осям. Присутствует при таких видах обработки металла, как прокатка, свободная ковка, прессовка, объемное штампование.
  • Напряженное состояние – когда две оси имеют напряжение сжатия, а одна – растяжения. Появляется при листовой штамповке (не всегда), а также при волочении.

Пластичность металла хорошо видна на схемах главных напряжений. Повышение роли напряжения сжатия приводит к увеличению пластичности в ходе обработки материала. Следовательно, пластичность при волочении ниже, чем при прессовании. Сжимая инструментом заготовку с боков при обработке давлением, можно увеличить напряжение сжатия металла.

В элементарно малом объеме деформация определяется схемой главных ее частей. Основными считаются те, что происходят по трем перпендикулярным осям, где касательное напряжение равно нулю. В ходе обработки давлением появляются три схемы главных деформаций:

  1. По двум осям происходят главные деформации сжатия, а по одной идет тот же процесс растяжения. Схема хорошо заметна при волочении, прессовании.
  2. По одной оси идет главная деформация сжатия, по двум видны процессы растяжения. Так происходит при прокатке (в калибрах, узкой полосы…), объемной штамповке или ковке.
  3. Первая ось – это главная деформация сжатия, вторая – главная деформация растяжения, на третьей ничего не происходит. Схема работает при штамповке листов, прокатке широких полос.

Информацию о зернах и волокнах металла, а также характере их формирования можно определить из схемы главных деформаций. При обработке давлением свойства материала (физические, механические), а также текстуру определяет максимальная главная деформация.

Примеры металлов, обладающих высокой пластичностью

 Пластичность металлов объясняется в том числе чистотой металлов, но не только. Самыми высокими показателями обладают платина (серебряного цвета), золото (желтого) и медь (розово-оранжевого). Чуть более низкую пластичность имеют:

  • сталь – зависит от различных добавок и углеродистого состава;
  • латунь и прочие сплавы;
  • свинец – достаточно высокая пластичность проявляется в диапазонах температуры.

6-min.jpg

Пластичность металла можно определить, только применяя ранее приобретенные знания или проводя эксперименты. Она зависит от того, каким образом различные добавки работают с металлическим стеклом, а также от степени чистоты металла.

Важную роль играют и иные переменные. Например, количество электронов, а также молекулярных орбиталей, которые принимают участие в связях материала. Кроме того, расположение кристалла, размер зерен.

Не существует стандартных правил. Для каждого металла нужно найти связи между различными переменными (электронными, микроскопическими), проанализировать их, используя многомерный анализ. Все это приводит к тому, что даже похожие по свойствам и характеристикам материалы могут не быть одинаково пластичными.

Читайте также
Максим Игоревич Макаров
Максим Игоревич печатает ...

Получите скидку до 30% на наши изделия

Скачать прайс
Написать на почту

Написать
письмо на почту

Позвонить бесплатно

Позвонить
бесплатно

Написать на почту

Написать
письмо на почту

Яндекс.Метрика