Металлообрабатывающая компания

VT-METALL

Гибкий подход - железное качество

Бесплатный номер:

Офис в Москве:

Звоните, мы сейчас работаем
+7 (800) 301-99-67 +7 (499) 403-38-65
info@vt-metall.ru
Заказать звонок

VT-METALL

Металлообрабатывающая компания

Звоните, мы сейчас работаем
8 (800) 301-99-67
МЕНЮ
Сплав железа с углеродом: как создается сталь и чугун

Сплав железа с углеродом

Сплав железа с углеродом

Из этого материала вы узнаете:

  • История открытия сплавов железа с углеродом
  • Структурные составляющие сплавов железо-углерод
  • Диаграмма сплава железо-углерод
  • Как читать диаграмму сплава железа с углеродом
  • Применение стали из железоуглеродистых сплавов
  • Разновидности чугуна из сплава железа с углеродом
  • Полиморфные превращения в сплавах железо-углерод

Открытие сплава железа с углеродом явилось одним из самых важных событий в истории развития металлургии. Именно эти два элемента подарили миру наиболее востребованные марки стали и чугуна. Это те сплавы, из которых производится большая часть промышленного оборудования, металлических конструкций, инструмента, изделий бытового назначения.

В зависимости от процентного содержания углерода в железе, а также способа литья эти сплавы приобретают разные свойства: стойкость к коррозии, необычайную прочность, эластичность и т. д. О том, какие сплавы железа и углерода используются сегодня и как их получают, вы узнаете из нашего материала.

История открытия сплавов железа с углеродом

Выдающийся изобретатель Дмитрий Чернов прославился диаграммой «железо-углерод» и открытием, связанным с полиморфными превращениями. Именно он стал первооткрывателем особых точек в таких сплавах, как чугун и сталь. По мнению ученого, на расположение точек на диаграмме влияет процентная доля углерода.

Открытие стало настолько значимым, что положило начало новой науке – металлографии.

 

Сама диаграмма сплава железа с углеродом – это масштабный проект, разработанный несколькими учеными из разных уголков мира. Именно поэтому обозначения фаз и основных точек являются международными.

Структурные составляющие сплавов железо-углерод

Основа чугуна и стали – сплав железа с углеродом. Оба черных сплава являются незаменимыми при создании конструкционных деталей для техники. Их качества и структура определяются свойствами базовых компонентов и примесей. Также важно учитывать характер взаимодействия элементов.

Чистое железо – это серебристо-белый металл, который имеет температуру плавления +1 539 °С. Металл является тугоплавким и может обладать одной из полиморфных модификаций – a либо g.

VT-metall предлагает услуги:

Низкотемпературный режим (ниже +910 °С) приводит к первой модификации. В этом случае для железа характерна объемно-центрированная кубическая решетка. Его называют а-феррумом. Железо является магнитным при температуре до +760 °С (до точки Кюри).

Нагрев железа приводит к превращению решетки из объемно-центрированной в гранецентрированную. Для создания g-железа необходим высокотемпературный режим – от +910 °С до +1 392 °С.

Углерод представляет собой неметаллический элемент. Его температура плавления составляет +3 500 °С. В природе элемент способен существовать в виде алмаза или графита. Первая полиморфная модификация в сплавах не встречается.

Если говорить об углеродистой структуре в сплаве железо-углерод, то она слоистая. В связи с этим неметаллический элемент в свободном виде имеет форму графита, особенность которого заключается в низких показателях пластичности и прочности.

Углерод растворим в железе и в жидком, и в твердом состоянии. Он способен создать химическое соединение под названием цементит, где углерод в свободном виде также будет иметь форму графита.

Возможные составляющие сплавов железа с углеродом перечислены ниже:

  • Аустенит (А). Это твердый раствор элементов в g-железе. Он может существовать только при высокотемпературном режиме (выше +727 °С). С минимальной из возможных температур растворимость составит 0,8 %, а при +1 147 °С – 2,14 %. Главная особенность аустенита – его высокая пластичность.
  • Графит. Он представляет собой аллотропическую модификация углерода, обладающую низкой прочностью и высокой мягкостью. Может присутствовать в графитизированной стали и в чугуне. Там он будет существовать в виде вкраплений различной конфигурации. Именно форма окажет непосредственное влияние на технологические и механические свойства сплава.
  • Ледебурит. Это механическая смесь из цементита и аустенита, в которой доля углерода составляет 4,3 %. Для получения ледебурита необходимо эвтектическое превращение при температуре +1 147 °С. Если температура составит +727 °С, то аустенит превратится в перлит, и ледебурит станет смесью цементита и перлита. Основные характеристики ледебурита – хрупкость и твердость. Компонент можно встретить во всех белых чугунах.
  • Перлит (П). Еще один элемент сплава железа с углеродом. В нем доля углерода составляет 0,8 %. Сам перлит представляет собой механическую смесь цементита и феррита. Его можно получить путем эвтектоидного распада (перекристаллизации) аустенита при температуре +727 °С. В честь распада перлит называется эвтекоидом. Для него характерен высокий уровень прочности и твердости. Также перлит способен повысить механические свойства сплава.
  • Феррит (Ф). Это твердый раствор внедрения элементов в a-железе. Существует при низкотемпературном режиме и обладает объемно-центрированной кубической решеткой. Растворимость углерода в феррите крайне низкая. В нормальных условиях она составит не более 0,005 %, а достигнет пика (0,02 %) только при температуре +727 °С. Феррит менее тверд в сравнении с аустенитом, а также более пластичен. В связи с этим он хорошо обрабатывается давлением в холодном состоянии.
  • Цементит (Ц). Компонент представляет собой соединения углерода и железа, а именно карбид железа с формулой Fe3C. Процентная доля углерода в веществе составляет 6,67. Цементит обладает сложной кристаллической решеткой и плавится при температуре около +1 600 °С. В сплаве железа с углеродом он является одновременно самой хрупкой и самой твердой составляющей. Следовательно, чем больше компонента содержится в сплаве, тем выше его твердость. Также цементит обладает неустойчивостью, поэтому при определенных условиях он распадается и образует графит. Происходит реакция: Fe3C > 3Fe + С.

Диаграмма сплава железо-углерод

На диаграмме сплава можно выделить следующие границы:

  • Линия ледебуритного превращения (линия ECF). Если содержание углерода в сплаве выше 2,14 %, то при его охлаждении жидкая фаза под линией становится ледебуритом.
  • Линия ликвидус (линия ACD). Ее особенность заключается в том, что при снижении температуры под ней запускается кристаллизация сплавов.
  • Линия перлитного превращения (линия PSK). При снижении температуры сплав под ней из аустенита превращается в перлит.
  • Линия солидус (линия AECF). При снижении температуры сплав под ней становится твердым.

Сплав железа с углеродом

Также на диаграмме присутствует несколько важных точек:

  • C. Вещество становится ледебуритом, концентрация углерода не меняется и остается на уровне 2,14 %. Температура превращения жидкости составляет +1 147 °С.
  • E. В этой точке аустенит содержит максимальное количество углерода – 2,14 % от общего количества сплава. Такое состояние достигается при температуре +1 147 °С.
  • P. При температуре +727 °С у феррита наступает стадия максимального насыщения углеродом (0,025 %).
  • S. Аустенит превращается в перлит. Средняя концентрация углерода остается той же и составляет 0,8 %.
 

Обычно температурный режим, при котором достигается необходимое состояние сплава, обозначается буквой А.

Из-за того, что фазы в сплавах железа с углеродом имеют разные температуры при нагреве и охлаждении, приходится вводить дополнительные обозначения.

Как читать диаграмму сплава железа с углеродом

Сплавы системы железо-углерод имеют свойство меняться при охлаждении или нагреве, повышении или снижении давления. Графически такие процессы обозначены на диаграмме состояния. Благодаря ей можно понять, как происходит то или иное превращение сплава.

Состав сплава с первоначальной долей углерода при заданной температуре можно увидеть, если двигаться по вертикальной прямой, которая соответствует содержанию в сплаве углерода.

Правило легче понять на примере, поэтому рассмотрим на диаграмме зону AEC. Возле нее находятся области жидкой фазы и аустенита (AESG). Следовательно, соединение в данной области состоит из образующегося твердого аустенита и жидкой фазы.

Определим для него концентрация углерода, двигаясь по разным фазам. Для этого нужно знать изначальную концентрацию углерода и заданную температуру. В примере это 2,5 % и +1 250 °С.

Теперь из точки графика нужно провести горизонтальную линию. Ее пересечение с АЕ, которая граничит с зоной аустенита, покажет содержание углерода в аустените при температуре +1 250 °С.

Сплав железа с углеродом

Если же прямая будет пересекаться с АС, которая граничит с зоной жидкой фазы, то можно узнать концентрацию углерода уже в жидкой фазе.

При сохранении температуры по данному методу определимо процентное содержание углерода в фазах абсолютно любого сплава:

  • в области AEC в аустените и в жидкой фазе;
  • в области CDF в жидкой фазе (процентное содержание углерода в цементите при этом неизменно – 6,67 %);
  • в области GPS в аустените и в феррите;
  • в области QPKL в феррите;
  • в области SEFK в аустените.

Когда содержание углерода становится выше, чем 2,14 %, охлаждаемый сплав получает насыщение углеродом ближе к 4,3 % (по линиям DC и AC) по мере приближения к температуре +1 147 °С (на уровне ECF). Затем жидкость превращается в эвтектику (ледебурит). Среднее содержание углерода остается неизменным.

При движении в сторону температуры +727 °С, что соответствует уровню PSK, содержание углерода в аустените приближается к 0,8 % (линии GS и ES). Затем аустенит превращается в эвектоид, т. е. в перлит. Как известно по предыдущим примерам, средняя концентрация углерода постоянна. В данном случае она составляет 0,8 %.

Применение стали из железоуглеродистых сплавов

Сталь, как и чугун, представляет собой сплав железа с углеродом. Металлы имеют широкое распространение, особенно часто их задействуют в машиностроении.

В стали концентрация углерода составляет не более 2 %.

Примеры металла:

  • инструментальная сталь;
  • конструкционная сталь;
  • техническое железо.

Если в стали содержание углерода было строго меньше 2 %, то в чугуне – больше. В среднем, концентрация вещества составляет от 2,5 до 3,5 %.

Помимо железа и углерода в металлах содержатся такие добавки:

  • марганец и кремний, содержание которых исчисляется в десятых долях процента (от 0,15 до 0,6 %);
  • фосфор и сера, концентрация которых составляет сотые доли процента (от 0,05 до 0,03 %).

Сплав железа с углеродом

Сталь, в которой концентрация углерода составляет не более 0,7 %, часто используется для создания:

  • листов;
  • проволоки;
  • ленты;
  • фасонного профиля разных видов;
  • уголкового железа;
  • таврового железа;
  • различных деталей, используемых в машиностроении (например, осей, шестерен, болтов, кувалд, молотков и др.).

Сталь, в которой концентрация углерода составляет более 0,7 %, используется при изготовлении режущих инструментов:

  • бородок;
  • резцов;
  • зубил;
  • сверл;
  • метчиков.

Свойства данного сплава железа с углеродом зависят от концентрации неметаллического компонента. Так, чем больше будет углерода, тем прочнее и тверже получится сталь.

Разновидности чугуна из сплава железа с углеродом

Выделяют два основных вида чугуна – литейный и предельный. Первый вид принято использовать в производстве и промышленной сфере. Второй находит применение в создании стали кислородно-конвертерным путем. В получившемся соединении доля марганца и кремния крайне мала.

Сплав железа с углеродом

Литейный чугун также имеет несколько разновидностей:

  • Половинчатая. Такой чугун имеет специальные свойства, так как часть углерода из состава имеет форму цементита, а другая часть – форму графита.
  • Белая. Здесь углерод находится в виде карбида железа. Название произошло от белого оттенка разлома. Белый чугун не находит применения в чистом виде, но активно используется при создании ковкого чугуна.
  • Серая. Отлив на изломе серебристый, поэтому такой чугун называют серым. Сфера использования материала достаточно широкая, в том числе и потому, что чугун легко обрабатывать резцами.
  • Высокопрочная. Данная разновидность способна увеличить прочность любого материала, куда она будет добавлена. Материал получают из серого чугуна и небольшого количества магния.
  • Ковкая. Как и в случае высокопрочной разновидности, в основе находится серый чугун. Повысить пластичность помогает процесс отжига.

Полиморфные превращения в сплавах железо-углерод

Полиморфные превращения в сплавах железа с углеродом происходят при соблюдении температурного режима.

Если температура составляет меньше +911 °С, то состояние железа называется α-феррумом. Кристаллическая решетка железа – ОЦК, что расшифровывается как объемный гранецентрированный куб. Особенность решетки состоит в большом расстоянии между атомами.

Сплав железа с углеродом

При температуре от +911 до +1392 °С у железа наблюдается модификация гамма. Кристаличесская решетка γ-феррума – ГЦК, т. е. гранецентрированный куб. Расстояние между атомами меньше, чем в случае объемного гранецентрированного куба.

Когда железо переходит из модификации альфа в гамму, его объем уменьшается. Причина кроется в виде кристаллической решетки. В ОЦК атомы не настолько упорядочены, как в ГЦК.

Правило работает и в обратном направлении. При переходе из гамма-стадии в альфа-стадию объем сплава железа с углеродом возрастает.

Если температура находится в диапазоне от +1 392 до +1 539 °С (последняя – температура плавления железа), то α-феррум переходит в свою другую разновидность – δ-феррум. Стоит помнить, что структура δ-феррума неустойчива, поэтому стремится перейти в более устойчивое состояние.

В результате удалось выяснить, что сталь и чугун – сплавы железа с углеродом с разным содержанием углерода и примесей. Это напрямую влияет на механические и химические свойства стали, а они – на сферу применения конечного материала.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

 

Экспресс расчет
стоимости заказа

Узнайте предварительную стоимость заказа,
отправив нам необходимую информацию:

Рекомендуемые статьи

Россия, Москва, 2-й Котляковский переулок, 18
Получить бесплатный чертеж

Получить бесплатный чертеж

Скачать прайс

Скачать прайс

Пересчет проекта

Пересчет проекта

Позвонить бесплатно

Позвонить бесплатно

Скачать прайс

Скачать
прайс

Написать WhatsApp

Написать WhatsApp

Заказать звонок

Узнайте предварительную стоимость заказа.
Оставьте заявку, и мы Вам перезвоним.