Особенности лазерной резки листовой стали и мониторинг качества образцов после лазерного воздействия
1 1 1 1 1 1 1 1 1 1 Рейтинг 0.00 (0 Голоса(ов))

Особенности лазерной резки листовой стали

Особенности лазерной резки листовой стали

Представлено описание автоматизированного лазерного комплекса с квантовым генератором мощностью 8 кВт, качество пучка которого не хуже, чем у одномодового лазера. Показана возможность использования такого комплекса в заготовительном производстве для резки листовых углеродистых и нержавеющих сталей. Контроль качества материала заготовок показал, что его свойства соответствуют стандартам.

Ключевые слова: технологические газовые лазеры, самофильтрующие резонаторы, газолазерная резка листового металла, технологические параметры, структура и свойства заготовок

 

Введение

Среди лазерных технологий, используемых в настоящее время в машиностроительных отраслях промышленности, наиболее широкое распространение получила газолазерная резка металлических и неметаллических материалов [1–3]. Особенно эффективным оказалось применение лазерной резки в заготовительном производстве [1]. Широкий диапазон толщин и марок разрезаемых материалов, практически любые параметры вырезаемых деталей позволяют изготавливать детали различных типоразмеров и геометрической сложности.

Основные преимущества лазерной резки следующие:

  • повышение качества обработки за счет минимальных зон термического влияния, снижения тепловых деформаций, отсутствия силового воздействия инструмента на деталь;
  • повышение скорости обработки (в несколько раз по сравнению с традиционными методами механообработки);
  • сокращение в несколько раз затрат времени на подготовку производства при освоении выпуска новой продукции;
  • увеличение коэффициента использования материала за счет внедрения системы оптимального раскроя;
  • высокое качество реза конструкционных сталей, позволяющее во многих случаях производить сварку встык без предварительной механической обработки;
  • отсутствие смещения кромок реза;
  • возможность изготовления деталей с углублениями в виде острых углов, переходов без радиусов, тонких перемычек (толщиной менее 1–2 мм), а также получения отверстий малого диаметра (в отличие от высечки круглым универсальным инструментом).

С помощью технологии лазерной резки можно производить раскрой листового материала по сложному контуру с точностью от 100 до нескольких микрометров.

Современные лазерные раскройные комплексы позволяют выполнять раскрой тонколистовых материалов со скоростью до 120 м/мин с погрешностью не более 100 мкм. Для максимального увеличения толщины разрезаемых листов и скорости резки необходимо повышать мощность излучения лазера, поэтому в последние годы осуществляется промышленное освоение технологии лазерной резки на уровне мощности 5 ÷ 6 кВт.

Основные характеристики технологического лазера — его мощность и качество пучка. Как известно, требования высокой мощности и высокого качества пучка являются противоречивыми [4]. В большинстве промышленных лазеров применяются устойчивые резонаторы, поэтому в них при увеличении мощности излучения возбуждаются моды высших порядков, что приводит к ухудшению качества пучка. Для разрешения данного противоречия в [5] предложено применить в технологическом СО2-лазере самофильтрующий резонатор (SFUR). При использовании такого резонатора авторам работ [6–8] удалось получить мощность излучения, большую, чем в лазере с одномодовым (ТЕМ00) резонатором такой же длины, и сохранить качество пучка, соответствующее лазеру с одномодовым резонатором.

В данной работе приводятся результаты разработки технологии лазерной резки с использованием мощного СО2-лазера с самофильтрующим резонатором.

Экспериментальная установка и параметры резки металла.

Для отработки технологии резки использовался автоматизированный лазерный технологический комплекс, созданный в Институте теоретической и прикладной механики СО РАН на основе непрерывного СО2-лазера мощностью до 8 кВт [9–11]. В лазере применен многопроходный самофильтрующий резонатор, позволяющий формировать излучение с расходимостью, близкой к дифракционной при высокой мощности излучения [6–8].

Схема экспериментальной установки приведена на рис. 1. Диаметр пучка на входе в резак можно корректировать с помощью входящего в состав лучепровода зеркального телескопа. Излучение фокусируется с помощью линзы (ZnSe) с фокусным расстоянием 190,5 мм. Измерения распределения в фокусе линзы выполнялись методом вращающегося цилиндра [12]. На рис. 2 показано распределение интенсивности излучения в фокальном пятне пучка, при котором производилась резка (кривая 1). Измерения проводились при

Рис. 1. Схема экспериментальной установки

Рис. 2. Распределение интенсивности излучения в фокальном пятне

мощности [11]. В ходе экспериментов проводился периодический контроль распределения в фокальном пятне с целью выявления возможных искажений, вносимых фокусирующей линзой или элементами оптического тракта. На рис. 2 представлен также пример искаженного пучка (кривая 2). Такому распределению соответствует худшее качество реза. Эксперименты проводились только с неискаженным пучком.

Лазерный рез формировался совместным воздействием на металл лазерного пучка и струи кислорода. Струя создавалась в коническом сопле с углом сужения 30◦ . Для получения качественного реза в установке предусмотрена возможность изменения диаметра сопла в пределах 0,5 ÷ 3,0 мм, давления газа (до 16 атм) и расположения фокуса линзы относительно плоскости разрезаемого листа. Для резки металла использовался технологический стол, обеспечивающий двухкоординатное программируемое перемещение резака со скоростью до 50 м/мин. Расстояние от среза сопла до плоскости листа устанавливалось и автоматически поддерживалось с помощью емкостного датчика. Диапазон размера зазора в режиме слежения составлял 100 ÷ 2000 мкм.

В качестве экспериментальных материалов использовались углеродистая сталь Ст. 3 и нержавеющая сталь 12Х18Н10Т. Основной задачей исследований являлось установление зависимостей скорости резки, ширины реза и качества поверхности реза от мощности излучения. Выбор этих параметров обусловлен тем, что скорость резки определяет производительность комплекса, ширина реза — потери металла, а состояние поверхности реза — возможность использования деталей или заготовок без дополнительной механической обработки.

На рис. 3 приведены зависимости скорости резки углеродистой стали от мощности используемого излучения и толщины обрабатываемого материала. Измерялись верхняя и нижняя границы скорости. Верхняя граница определена как предельная скорость, при которой начинаются непрорезы и заплавы на листе, что приводит к значительному ухудшению качества нижней кромки разрезаемого материала. Нижняя граница скорости характеризуется возникновением автогенного режима резки и резким ухудшением качества

Рис. 3. Зависимости скорости резки от мощности излучения при различной толщине листа

разрезаемой поверхности. На листе толщиной 1,5 мм нижнюю границу скорости зарегистрировать не удалось. На рис. 3 видно, что верхняя граница скорости резки линейно возрастает с увеличением мощности излучения, в то время как нижняя граница практически не меняется (для конкретной толщины материала). Естественно, что высокоскоростные режимы резки предпочтительнее с точки зрения производительности. Однако при окончательном выборе режима резки нужно учитывать чистоту плоскости реза.

Важным параметром реза является его ширина. Эта величина связана как с мощностью используемого излучения, так и со скоростью резки. На рис. 4 приведены зависимости ширины реза листовой стали Ст. 3 толщиной 5 мм от скорости при различной мощности излучения. Ширина реза уменьшается при увеличении скорости резки и возрастает при повышении мощности излучения (рис. 5). Проведенные измерения позволяют определить значения удельной энергии излучения при различной толщине разрезаемого материала P = W/(V dh). Согласно расчету удельная энергия, необходимая для нагрева до температуры плавления и расплавления единицы объема стали, составляет 12 Дж/мм3 .

Удельная энергия излучения монотонно уменьшается с увеличением толщины разрезаемого материала (рис. 6). Однако измеренное значение P больше расчетного. Можно

Рис. 4. Зависимость ширины реза от скорости резки при различной мощности излучения (d = 5 мм)

Рис. 6. Зависимость необходимого энерговклада от толщины металла при различной мощности излучения

Рис. 7. Формы разрезов стали толщиной 5 мм при различной мощности излучения

предположить, что уменьшение удельной энергии излучения при резке заготовок большой толщины может быть обусловлено более эффективным использованием струи кислорода.

Для иллюстрации изменения геометрии реза в поперечном сечении на рис. 7 приведены фотографии разрезов стали толщиной 5 мм при скорости резки 1,2 м/мин, полученных при различной мощности излучения. На выходе наблюдается некоторое расширение канала резки. Четко прослеживается зависимость формы и ширины реза от мощности используемого излучения. Можно отметить также наличие расширяющихся и сужающихся участков резов и непрямолинейность границ.

Механические свойства и структура образцов после лазерной резки.

Наиболее эффективна газолазерная резка тонколистового металла. Однако необходимо убедиться в том, что резка не оказывает негативного влияния на свойства обрабатываемого материала. Для проверки были изготовлены две партии листовых образцов после лазерной резки в среде кислорода. Первая партия: материал — сталь Ст. 3, толщина листа 1,5 мм; вторая партия: материал — сталь 12Х18Н10Т, толщина листа 1,0 мм. Исследовались образцы прямоугольной формы с размерами 100 × 10 мм. Образцы испытывались на растяжение на универсальной разрывной машине Instron-1185 при скорости деформирования 5 · 10−4 с −1 (скорость движения подвижного захвата 1 мм/мин). Температура испытания комнатная.

Установлено, что образцам из нержавеющей и углеродистой стали в выбранных условиях соответствуют деформационные кривые без особенностей типа “зуб” и “площадки текучести”, поэтому определялся условный, а не физический предел текучести [13].

Результаты механических испытаний образцов после лазерной резки приведены в табл. 1, 2. Временное сопротивление и относительное удлинение при разрыве стали Ст. 3 (табл. 1) удовлетворяют требованиям ГОСТ 16523-70: σв = 370 ÷ 480 МПа, δ > 22 % [14]. Условный предел текучести для листовой стали Ст. 3 не регламентируется. Однако согласно [15] он не должен быть ниже 205 МПа. Механические свойства образцов из стали 12Х18Н10Т (табл. 2) существенно превышают требования ГОСТ 5582-75: σ0,2 > 205 МПа, σв > 530 МПа, δ > 40 % [14]. Для одного образца из стали Ст. 3 значение σ0,2 составляло менее 205 МПа, что могло быть обусловлено неблагоприятной микроструктурой материала, сформировавшейся после газолазерной резки.

Исследования микроструктуры проводились на поперечных шлифах. Способ изготовления шлифов традиционный: механическая шлифовка, механическая полировка алмазной пастой АСМ 10/71 НВЛ и химическое травление. Шлифы анализировались на микроскопе

Механические характеристики образцов из стали

Neophot-21. Образцы из стали Ст. 3 протравливались в 4 %-м спиртовом растворе HNO3, а образцы из стали 12Х18Н10Т — в “царской водке” (75 % HCl + 25 % HNO3).

На рис. 8 видно, что структура образцов из стали Ст. 3 является феррито-перлитной. Зерна феррита и колонии перлита имеют полиэдрическое строение. Зона термического влияния травится сильнее и четко видна на микрофотографии. Результаты анализа структурных характеристик материала, представленных в табл. 3, позволяют сделать следующий вывод: в зоне термического влияния происходит существенное измельчение зерен, что, по-видимому, обусловливает повышение микротвердости почти в два раза.

Типичная структура образцов из стали 12Х18Н10Т представлена на рис. 9. Здесь также имеется зона термического влияния, но ее поперечный размер меньше, чем в образцах из стали Ст. 3 (примерно 75 мкм и 90 мкм соответственно). Измельчение зерна в зоне термического влияния меньше, чем в образцах из стали Ст. 3. Отметим также, что размер зерна основного металла в образцах из стали 12Х18Н10Т составлял приблизительно 5 мкм и был значительно меньше размера ферритного зерна в образцах из стали Ст. 3 (примерно 17 мкм).

Результаты микроструктурных исследований позволяют предположить, что на механические свойства образцов из стали Ст. 3 могло оказать воздействие наличие зоны термического влияния. Для проверки этого предположения у части образцов зона термического влияния удалялась фрезерованием (по 200 мкм с каждой длинной стороны). Затем на таких образцах определялись механические характеристики (см. табл. 1). Удаление зоны термического влияния практически не оказало воздействия на прочностные свойства стали Ст. 3. Можно лишь отметить увеличение пластичности приблизительно на 20 %. Некоторое уменьшение пластичности после лазерной резки, очевидно, обусловлено повышенной микротвердостью этой зоны (см. табл. 3). Однако в обоих состояниях осредненные механические характеристики удовлетворяют требованиям ГОСТ 16523-70. Наличие

Рис. 8. Микрофотография поперечного шлифа образца из стали Ст. 3 после лазерной резки Рис. 9. Микрофотография поперечного шлифа образца из стали 12Х18Н10Т после лазерной резки

Структурные характеристики образцов из стали Ст. 3 после газолазерной резки

образцов с достаточно низким условным пределом текучести обусловлено особенностью свойств исходного материала.

Аналогичная операция с образцами из стали 12Х18Н10Т, как и следовало ожидать, никакого влияния на средние механические свойства материала не оказала (см. табл. 2).

Заключение

Разработанный в Институте теоретической и прикладной механики СО РАН автоматизированный технологический комплекс на основе CO2-лазера мощностью до 8 кВт с самофильтрующим резонатором может быть эффективно использован в заготовительном производстве для раскроя листовых углеродистых и специальных сталей. Такой комплекс позволяет по заданной программе производить вырезку заготовок толщиной до 20 мм со скоростью до 1 м/мин. При этом погрешность размеров заготовок не превышает 100 мкм и обеспечивается качество поверхности реза, при котором не требуется дополнительная механическая обработка. Контрольные исследования механических характеристик и микроструктуры материала заготовок после газолазерной резки показали, что эта операция не ухудшает свойств металла и поэтому не требует корректирующей финишной термической обработки.

Литература

  1. Григорьянц А. Г., Соколов А. А. Лазерная резка металлов. М.: Высш. шк., 1988.
  2. Steen William M. Laser material processing. Berlin: Springer-Verlag, 1991.
  3. Игнатов А. Г., Суздалев И. В. Состояние и перспективы применения лазерного технологического оборудования // Судостроит. пром-сть. Сер. Сварка. 1989. Вып. 7. С. 3–18.
  4. Ананьев Ю. А. Оптические резонаторы и проблема расходимости лазерного излучения. М.: Наука, 1979.
  5. Gobbi P. G., Reali G. S. A novel unstable resonator configuration with a self-filtering aperture // Optics Communic. 1984. V. 52. P. 195–198.
  6. Иванченко А. И., Крашенинников В. В., Пономаренко А. Г., Шулятьев В. Б. Самофильтрующий резонатор в СО2-лазере непрерывного действия // Квантовая электрон. 1989. Т. 16, № 2. С. 305–307.
  7. Грачев Г. Н., Иванченко А. И., Смирнов А. Л., Шулятьев В. Б. Неустойчивый резонатор с пространственной фильтрацией излучения в технологическом СО2-лазере // Квантовая электрон. 1991. Т. 18, № 1. С. 131–134.
  8. Иванченко А. И., Крашенинников В. В., Смирнов А. Л., Шулятьев В. Б. Технологический лазер мощностью 3 кВт с высоким качеством излучения // Квантовая электрон.
  9. 1994. Т. 21, № 7. С. 643–647.
  10. Golyshev A. P., Ivanchenko A. I., Orishich A. M., Shulyatyev V. B. Industrial lasers of power up to 10 kW with high quality of radiation // Intern. J. High Soc. Opt. Engng. 2001. V. 4184. P. 414–418.
  11. Afonin Yu. V., Filev V. F., Ivanchenko A. I., et al. Automated laser technological complex for cutting with irradiation power of 8 kW // Intern. J. High Soc. Opt. Engng. 2003. V. 5479. P. 164–169.
  12. Афонин Ю. В., Голышев А. П., Иванченко А. И. и др. Генерация излучения с высоким качеством пучка в непрерывном СО2-лазере мощностью 8 кВт // Квантовая электрон. 2004. Т. 34, № 4. С. 307–309.
  13. Lim G. C., Steen W. M. Instrument for instantaneous in situ analysis of the mode structure of a high-power laser beem // J. Phys. Ser. E: Sci. Instr. 1984. V. 17. P. 999.
  14. Металловедение и термическая обработка стали: Справ. / Под ред. М. Л. Бернштейна, А. Г. Рахштадта. М.: Металлургия, 1991. Т. 1.
  15. Марочник сталей и сплавов / Под ред. В. Г. Сорокина. М.: Машиностроение, 1989.
  16. Марочник сталей и сплавов / Под ред. И. Р. Крянина. М.: Центр. науч.-исслед. ин-т технологии машиностроения, 1977.
  • Металлические ограждения: разновидности, рекомендации по выбору

    Металлические ограждения: разновидности, рекомендации по выбору

    Металлические ограждения универсальны, они применяются не только для отделения территории, но и в качестве оградительных конструкций на балконах и лестницах. Существуют разные виды. Одни ограждения из металла рассчитаны на бюджетные решения, другие – на максимальную безопасность территории, третьи являются декоративными. Объединяет все типы оград практичность, долговечность, сравнительно небольшая стоимость (если речь не идет о кованых заборах). О том, какой вид металлического ограждения лучше выбрать для загородного дома или дачи, чем огородить балкон или лестничный пролет, читайте в нашем материале.
  • Ангары из металлоконструкций: виды, этапы производства

    Ангары из металлоконструкций: виды, этапы производства

    Быстровозводимые ангары из металлоконструкций нашли свое применение в разных сферах. Их используют в качестве складов, промышленных цехов, торговых залов, авторемонтных зон, в сельскохозяйственных целях. Объясняется такая популярность низкой стоимостью и высокой скоростью возведения. Такие металлоконструкции сочетают в себе практичность, прочность, мобильность, могут размещаться на территориях со сложными почвами, не требуют работ капитального строительства. О том, какие бывают виды ангаров из металлоконструкций, а также об этапах их производства читайте в нашем материале.
  • Изготовление металлокаркасов: секрет популярности технологии

    Изготовление металлокаркасов: секрет популярности технологии

    Изготовление металлокаркасов сегодня более чем востребовано. Данные конструкции обладают многими неоспоримыми достоинствами и с успехом применяются в строительстве. С их помощью давно уже возводят не только жилые здания, но и достаточно сложные промышленные сооружения. Разумеется, чтобы преимущества технологии могли использоваться на все сто процентов, к процессу изготовления металлических каркасов предъявляются жесткие требования. И проводить такие работы могут только высококвалифицированные специалисты, причем соблюдая определенную последовательность действий.
  • Дефекты лазерной резки металла: как предотвратить их появление

    Дефекты лазерной резки металла: как предотвратить их появление

    Возможны ли дефекты при лазерной резке металла? Как ни печально, но такое случается, несмотря на то, что данная технология признана на сегодняшний день одной из самых продвинутых в мире. С другой стороны, совершенства не бывает в принципе, к нему можно лишь вплотную приблизиться. И процесс обработки металлов лазером это без проблем позволяет. А любые возможные дефекты можно предотвратить при наличии определенных знаний у мастера. Опытным специалистам вполне под силу сделать так, чтобы работа была выполнена в высшей степени профессионально и в точно назначенный срок.
  • Лазерная и плазменная резка металла: отличия, сильные и слабые стороны

    Лазерная и плазменная резка металла: отличия, сильные и слабые стороны

    Выбирая, что лучше – лазерная и плазменная резка металла, нужно в первую очередь учесть отличия и сходства двух видов. Это важно как для подбора оборудования для собственного производства, так и для заказа раскроя на стороне. Понимание сильных и слабых сторон каждого метода позволит получить качественную продукцию и не выйти за рамки бюджета. Несмотря на то, что можно встретить мнение о превосходстве лазера над плазмой, корректнее было бы сказать, что все зависит от толщины и типа раскраиваемого металла. В одном случае надо выбрать лазер, для другого подойдет плазма. В нашей статье мы расскажем обо всех особенностях данных технологий и определим, в каких условиях и что лучше применять.
  • Металлический стеллаж для документов: как выбрать наиболее удобный

    Металлический стеллаж для документов: как выбрать наиболее удобный

    Металлический стеллаж для документов – универсальная система хранения, которая используется преимущественно в офисах. Однако сфера его применения не ограничивается только офисными помещениями. Такие стеллажи отлично подходят для хранения архивов больших производственных и торговых компаний, библиотек. В зависимости от нагрузки, размеров помещения подбираются и характеристики стоек. Они могут различаться по габаритам, материалам изготовления несущих конструкций и настилов. Из нашего материала вы узнаете, какие типы стеллажей используются для хранения документов и на что стоит обратить внимание при их выборе.
  • Оборудование для гибки листового металла: сферы применения и рекомендации по выбору

    Оборудование для гибки листового металла: сферы применения и рекомендации по выбору

    Оборудование для гибки листового металла используется как в небольших цехах, занимающихся металлообработкой, так и на крупных производственных объектах. С его помощью изготавливаются профильный прокат, трубы, изделия сложной формы. Выбор типа, модели станка, его производителя зависит от объемов изготавливаемой продукции, характеристик помещения, мощностей, которыми располагает производитель. Из нашего материала вы узнаете, какие бывают основные разновидности оборудования для гибки листового металла, а также о том, на что необходимо обратить внимание при покупке станков.
  • Профильная гибка металла: особенности технологии

    Профильная гибка металла: особенности технологии

    Под профильной гибкой металла, в числе прочего, понимается и гибка труб с сечением, отличным от круглого. Данный процесс отличается достаточной сложностью, имеет определенные нюансы и требует наличия специальных устройств. Разумеется, не менее важен и опыт специалиста, проводящего работы. Чтобы получилось изделие нужной формы, мастер обязан досконально знать технологии горячей и холодной гибки, уметь использовать предназначенное для этого оборудование, учитывать характеристики профиля. Впрочем, при желании все это нетрудно освоить, поэтому гибка профильных труб даже в домашних условиях для многих не является какой-то сверхсложной задачей.
  • Токарная обработка цветных металлов

    Токарная обработка цветных металлов

    Токарная обработка цветных металлов широко распространена среди всех различных методов изготовления деталей с заданными геометрическими параметрами. Суть данного вида обработки состоит в том, что с заготовки снимают при помощи режущего инструмента необходимый слой металла, соблюдая при этом требуемые размеры и параметры шероховатости поверхностей. Изделия из металла можно обработать с помощью различных методов, в результате которых из заготовок получаются детали, подходящие по размерам и другим параметрам к различным механизмам. Для их выполнения на токарных станках необходимы многофункциональные приспособления и режущий инструмент в виде резцов, с помощью которых можно изготавливать детали различной геометрической формы и конфигурации.

Экспресс расчет
стоимости заказа

Узнайте предварительную стоимость заказа,
отправив нам необходимую информацию:

Заказать звонок

Узнайте предварительную стоимость заказа,
отправив нам необходимую информацию:

Акция