Точность плазменной резки: выбор технологии и стандарты качества
1 1 1 1 1 1 1 1 1 1 Рейтинг 0.00 (0 Голоса(ов))

Точность плазменной резки

Точность плазменной резки

Вопросы, рассмотренные в материале:

  • Какова технология плазменной резки
  • Чем нормируется точность плазменной резки
  • Что выбрать для определения точности плазменной резки

Оборудование для плазменной резки металла сегодня повсеместно применяется во многих отраслях хозяйства. Подобные технологии используются на крупных заводах, на мелкосерийном производстве и в небольших частных мастерских, а иногда и в быту. Струя плазмы быстро и точно раскраивает металл любой толщины. Оборудование для такой резки достаточно недорого и освоить его не так уж сложно. Из этой статьи вы узнаете, что такое точность плазменной резки металла.

 

Технология плазменной резки

Суть такой резки – воздействие на металл струей плазмы, которая образуется в процессе ионизации и нагрева газа до +10 000 °С и выше. Такой газ в своем составе содержит как заряженные, так и нейтральные частицы, но при этом он квазинейтральный. Свободные радикалы в нем делают плазму проводником электрического тока.

Изучение электропроводности высокоскоростных потоков газов в условиях высокой температуры послужило толчком для разработки и создания плазменных аппаратов для резки металла.

Существуют два метода воздействия на металл:

  • рез прямого действия;
  • косвенный рез.

При использовании первого способа электрическая дуга зажигается между катодным узлом внутри резака и металлическим изделием, выступающим в роли анода. Катод находится внутри корпуса с соплом. Струя газа под давлением проходит мимо электрода, нагревается до высоких температур и становится ионизированной. Большая скорость потока газа получается при выходе из сопла. Возникшая электрическая дуга расплавляет металлическое изделие. Нагретый газ выходит из зоны нагрева.

Технология плазменной резки

Вторым способом раскраивают не только металл, но и материалы с низкой электропроводностью и диэлектрики. При косвенном резе источник электроискры размещается внутри резака, и на обрабатываемую поверхность воздействует исключительно струя плазмы. Стоимость оборудования с косвенной резкой выше, чем у аппаратов прямой плазменно-дуговой резки.

Общее техническое название резаков обоих типов – плазматрон, то есть генератор плазмы.

Технология плазменной резки имеет ряд преимуществ перед другими способами раскроя и обработки металла:

  • качественная резка изделий из металла, после которой не требуется шлифовки места разреза;
  • малые толщины до 50 мм режутся в 25 раз быстрее, чем посредством газопламенной резки;
  • плазморезы годятся для художественных работ и сложной фигурной резки;
  • обрабатываются не только металлы, но и прочие материалы;
  • деталь греют локально в месте разреза, за счет чего избегают тепловых и механических деформаций;
  • простота в использовании – не нужны баллоны газа под давлением, взрывоопасные и горючие вещества.

Оборудование для резки металла плазмой бывает промышленное и бытовое. На большом производстве для быстрой резки металла пользуются как ручными аппаратами, так и специальными стационарными автоматизированными плазменными станками с ЧПУ. Для бытовых целей используют небольшие переносные аппараты, питающиеся от электрической сети 220 или 380 V.

В аппаратах для бытового использования источником плазмы является сварочный генератор (инвертор) или трансформатор. Оборудование с инвертором меньшего размера и более удобно в использовании. Устройства с трансформатором отличаются высокой надежностью и долговечностью. Рабочее тело – подготовленный атмосферный воздух. Ручной аппарат обладает мощностью для распила металла толщиной не более 15–20 мм. У некоторых моделей есть функция бесконтактного зажигания дуги. В комплекте также плазмотрон и устройство подготовки воздуха.

Точность плазменной резки

На рисунке ниже дан графический пример для отображения понятия о точности плазменной резки металла. Пунктирная линия показывает край изделия согласно чертежу, который нужно получить после резки. Сплошная линия – кромка детали, которая получена фактически после обработки плазморезом.

Отчетливо видны отклонения от изначальных параметров и контура:

  • АЛ, Дв, ДС, AD – отклонения габаритов от изначальных номиналов;
  • Д/’лД/д, fc, А/0 – отклонения от изначальной формы краев.

В этом конкретном случае – это отклонение от прямолинейности, так называемая непрямолинейность. Таким образом, в это отклонение АЛ от номинала А входит изменение размера из-за перекоса кромки D.

Точность плазменной резки

Помимо указанных отклонений, присутствуют:

  • искажения от изначального взаимного расположения кромок из-за перекоса этих кромок относительно других или базовой;
  • отклонения всей поверхности изделия от плоскости;
  • неперпендикулярность плоскости разреза к поверхности изделия;
  • неплоская поверхности разреза;
  • отклонения от изначальных номинальных размеров и формы фасок под сварку;
  • отклонения от изначальных номинальных размеров и формы вырезов.

Приемлемый размер отклонений в точности регламентируется ГОСТом 14792–80 «Детали и заготовки, вырезаемые кислородной и плазменно-дуговой резкой. Точность, качество поверхности реза». Указанный норматив касается изделий, которые обрабатывают механизированной кислородной и плазменной резкой.

Изделия, согласно этому ГОСТу, выполнены:

  1. Из листовой стали следующих типов: низколегированной, низкоуглеродистой, высоколегированной, коррозионно-стойкой, жаростойкой и жаропрочной.
  2. Из листового алюминия и его сплавов.

Допустимы толщины в пределах от 5 до 100 мм при кислородной резке и от 5 до 60 мм при плазменной. ГОСТ допускает три класса точности для изделий одинаковых размеров.

Согласно исследованиям, использование портальных станков с цифровым программным управлением позволяет добиться первого и второго классов точности реза плазменной резки, если обеспечивается точность работы машин согласно их заводским установкам.

Второй и третий класс точности плазменной резки достигается станками с фотоэлектронным управлением, если согласно установочным чертежам требуется точность не менее ± 1,0 мм.

Переносные и ручные агрегаты для раскроя изделий обеспечивают третий класс точности выполняемых резов.

В нижеприведенной таблице указаны нормы допустимых отклонений в точности от номинальных значений при резке согласно ГОСТу 14792–80. Допустимые отклонения учитываются как половина допуска на размер.

Класс точности

Способ резки

Толщина листа, мм

Предельное отклонение при номинальных размерах детали или заготовки, мм

До 500

500–1500

1500–2500

2500–5000

1

Плазменная и кислородная

5–60

+/-1

+/-1,5

+/-2

+/-2,5

2

Плазменная и кислородная

5–60

+/-2-2.5

+/-2,5–3

+/-3–3,5

+/-3,5–4

3

Плазменная и кислородная

5–60

+/-3,5–4

+/-3,5–4

+/-4–4,5

+/-4,5–5

В следующей таблице приведены нормы допускаемых отклонений на неперпендикулярность краев в зависимости от толщины металла, который режут плазмой. Чтобы добиться допусков, указанных в таблице, следует работать согласно технологическим заводским установкам и в отработанных режимах:

Класс точности

Способ резки

Нормы при толщине разрезаемого металла, мм

5–12

13–30

31–60

61–100

1

Плазменная

0,4

0,5

0,7

-

2

Плазменная

1

1,2

1,6

-

3

Плазменная

2,3

3

4

-

В третьей таблице даны допустимые нормы для шероховатости поверхности реза. Допустимы некоторые неровности, не укладывающиеся в указанные нормы шероховатости:

Класс точности

Способ резки

Нормы при толщине разрезаемого металла, мм

5–12

13–30

31–60

61–100

1

Плазменная

0,05

0,07

0,07

-

2

Плазменная

0,1

0,2

0,32

-

3

Плазменная

0,2

0,32

0,63

-

В последней таблице указаны нормы на ширину зоны термического влияния. Нормативы установлены для разреза плазмой сплавов алюминия. Они увеличиваются в два раза, если работают с углеродистой сталью, и уменьшаются в два раза, если речь идет об аустенитной стали:

Класс точности

Нормы для алюминиевых сплавов, при толщине в мм

5–12

13–30

31–60

1

0,1

0,2

0,4

2

0,4

0,8

1,6

3

0,8

1,6

3,2

ГОСТ или ISO для норм точности плазменной резки

Последние 10 лет на предприятиях российской промышленности широко используют технологию плазменной резки для заготовки материалов. В настоящее время лучшим считается оборудование для промышленной резки импортного производства, именно оно обеспечивает требуемую точность плазменной резки. Лидеры в этой области – компании из США Hypertherm и Victor, а также германская фирма Kjellberg. Однако производителями иностранного оборудования качество выполнения плазменной резки оценивается по ISO 9013:2002, а не по ГОСТ 14792-80.

Российский ГОСТ выпущен в 1980 году, а международный ISO – в 2002 году. Более поздний документ учитывает специфику современного оборудования и технологий, в отличие от более раннего ГОСТа. Каким же стандартом руководствоваться в своей работе конкретному российскому предприятию, решает не государство, как это было раньше, а руководство или отраслевые регламенты.

ГОСТ 14792–80 вводит следующие основные параметры:

  1. Точность разрезаемых деталей и заготовок.
  2. Критерии качества поверхности реза.
  3. Отклонение плоскости реза от перпендикулярности.
  4. Шероховатость плоскости реза.
  5. Зона термического воздействия.

В ISO 9013:2002 приведено подробное описание процесса термической резки и методов замера для разных типов реза и толщин.

Лазерная резка по ГОСТ

a

Толщина реза

Rz5

Средняя высота профиля

Aa

Уменьшение толщины

t

Толщина обрабатываемой детали

Допуск на машинную обработку

t0

Допуск на прямолинейность

c

Глубина канавки

tp

Допуск на параллелизм

I

Наклон линии сопротивления резанию

%

Допуск на перпендикулярность

G0

Верхнее предельное отклонение

и

Допуск на перпендикулярность или угловатость

Gu

Нижнее предельное отклонение

Zt

Высота элемента профиля

In

Оценочная длина

ß

Угол скоса среза

Ir

Одиночная длина выборки

<J

Угол (установочный) насадки

r

Плавление верхнего края

 

 

В ISO 9013:2002 шире перечень критериев для определения точности и качества заготовок и их взаимного влияния друг на друга.

В международном стандарте ISO более критично и детально оценивается точность геометрии, а значит, и качество реза. Также в этом документе описана достаточно гибкая методика расчета и определения мест замеров. В отличие от ГОСТа, где перпендикулярность реза оценивается по трем критериям, в ISO присутствует таблица с пятью классами точности, и по каждому из них можно определить конечное значение по вполне конкретной толщине исходного материала.

На рисунке представлен вариант оценки германской компанией Kjellberg качества и точности реза при использовании разных технологий.

Оценка качества и точности реза

Здесь вполне наглядно можно сопоставить необходимое качество изделий с технологическими особенностями оборудования, чего не позволит сделать ГОСТ 14792-80.

И все-таки, чем же лучше руководствоваться: отечественным ГОСТом или международным ISO? Очевидно, что последний – более современный стандарт системы менеджмента качества, но нет смысла руководствоваться только им. Также очевидно, что отдельно взятое российское предприятие не сможет единолично обеспечить качество согласно ISO по всей цепочке до конечного потребителя, если прочие компании отрасли руководствуются другими стандартами и критериями качества продукции и услуг. Если на производстве используется отечественное оборудование, то работа согласно ГОСТов вполне оправдана.

Однако если предприятие ориентировано на экспорт или руководство компании ставит амбициозные задачи по организации бизнеса согласно международным стандартам, которые прописывают требования к точности плазменной резки, то руководством к действию послужат стандарты ISO.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

  • Рулонная сталь: 10 преимуществ

    Рулонная сталь: 10 преимуществ

    Рулонная сталь – очень прочный и качественный материал, нашедший обширное применение в строительстве, в производстве конструкций кровли, фасада и многих других подобных элементов. Такая сталь, за счет своего ключевого свойства свободно сворачиваться в рулоны, обеспечивает прекрасный уровень эргономичности при применении и хранении. Но, возможно, не все знают о других достоинствах рулонной стали и областях ее применения. Для чего еще она предназначена? Какие ее виды существуют? Все ответы читайте далее.
  • Применение дуговой сварки: от ручной до автоматической

    Применение дуговой сварки: от ручной до автоматической

    Современную металлообработку сложно представить без применения дуговой сварки. Она используется для соединения отдельных элементов металлических конструкций. Кроме того, применяется наряду с другими видами работ, например, такими как литье, штамповка и прокат деталей изделий. Электродуговая сварка – это самая популярная и считающаяся универсальной модификация сварочной технологии, которая очень часто используется в металлообработке – где и как расскажем ниже.
  • Прецизионная металлообработка: технология и нюансы

    Прецизионная металлообработка: технология и нюансы

    Прецизионная металлообработка необходима для получения деталей высокоточных размеров. В данном случае речь идет даже не о сотнях, а о десятках и единицах микрон. Соответственно, такой способ металлообработки еще называют высокоточным. Прецизионная обработка находит свое применение в авиапромышленности, робототехнике, военной промышленности, производстве научного оборудования и в машиностроении. О технологиях, которые используются в точной металлообработке, а также об инновациях в данной сфере, расскажет наша статья.
  • Металлический корпус для оборудования: виды и технология изготовления

    Металлический корпус для оборудования: виды и технология изготовления

    Металлический корпус для оборудования требует грамотного подхода в проектировке и производстве. Здесь не бывает неважных мелочей, ведь «уход» размера на 1 мм может обернуться невозможностью установки корпуса в его посадочное место либо размещения внутри него необходимого элемента. Помимо требований к точности, есть много других нюансов, которые нужно учитывать при выборе или разработке корпуса. Какой выбрать материал, покрытие, виды конструкции? Об этом расскажем в нашей статье.
  • Металлические шкафы для баллонов: как выбрать и правильно установить

    Металлические шкафы для баллонов: как выбрать и правильно установить

    Металлические шкафы для баллонов пользуются большим спросом среди владельцев не газифицированных домов. Каждый человек понимает, какую газ представляет угрозу, и поэтому нужно сделать все, чтобы обеспечить полную безопасность. Недостаточно просто сколотить ящик и поставить туда газовый баллон. Приспособление должно отвечать требованиям по материалу, расположению, размеру, оснащению и маркировке. О том, как выбрать наиболее оптимальный шкаф для хранения газовых баллонов, расскажем в нашем материале.
  • Стеллаж металлический на 6 полок: виды, преимущества и нюансы эксплуатации

    Стеллаж металлический на 6 полок: виды, преимущества и нюансы эксплуатации

    Стеллаж металлический на 6 полок будет востребован не только в складских помещениях, но и в архивах, магазинах и даже офисах, если высота помещения позволит установить такую конструкцию. Так как от качества стеллажа зависит сохранность товаров или документов, то к его выбору нужно подойти с максимальной ответственностью. Значение будут иметь не только габариты самого стеллажа или качество металла, но и размер помещения, объем хранимого имущества и многое другое. Чтобы вы могли сделать правильный выбор, в нашем материале мы собрали самую необходимую информацию.
  • Аргонная сварка алюминия: расходные материалы и настройка оборудования

    Аргонная сварка алюминия: расходные материалы и настройка оборудования

    Аргонная сварка алюминия – единственный способ получить прочное соединение, которое отвечает всем предъявляемым требованиям. Проблема сварки алюминия в том, что на его поверхности находится инертная оксидная пленка, достаточно прочная, чтобы сделать неэффективными другие способы сварки. Однако недостаточно просто выбрать аргоновую сварку как метод. Необходимо также правильно подобрать расходные материалы и настроить само оборудование. О том, как получить крепкие швы, не требующие обработки, какие есть способы проверки соединений, читайте в нашей статье.
  • Типы металлических стеллажей: их преимущества и недостатки

    Типы металлических стеллажей: их преимущества и недостатки

    Типы металлических стеллажей разной конфигурации позволяют сегодня максимально использовать внутреннее пространство помещения. Данные конструкции рассчитаны на высокую нагрузку, а компактное хранение габаритных грузов, вещей и товаров позволяет рационально использовать пространство помещения. Стальные изделия имеют достаточно большой срок эксплуатации, кроме того, сборные модели можно видоизменять в зависимости от потребностей. Выбор стеллажей сегодня достаточно широк: палетные, полочные, консольные, въездные или глубинные, мезонин, мобильные модели и, конечно же, гравитационные. Какой же тип лучше? Зависит от цели приобретения. Давайте разбираться подробнее.
  • Стеллаж металлический на 4 полки: критерии выбора и правила эксплуатации

    Стеллаж металлический на 4 полки: критерии выбора и правила эксплуатации

    Стеллаж металлический на 4 полки – весьма популярная на современном рынке конструкция, активно применяемая для хранения самых разных предметов. На сегодняшний день такие изделия активно используются, например, в офисах, библиотеках, мастерских, на базах оптовой и розничной торговли. Приобрести хороший металлический стеллаж на 4 полки – не так просто, как может показаться на первый взгляд, ведь огромное разнообразие производителей и моделей способно ввести в растерянность современного покупателя. Чтобы вам было легче выбрать изделие, способное выдерживать основательные нагрузки, мы написали для вас эту статью.

Экспресс расчет
стоимости заказа

Узнайте предварительную стоимость заказа,
отправив нам необходимую информацию:

Добавить файл
Акция