Обработка металла лазером: преимущества и особенности технологии
1 1 1 1 1 1 1 1 1 1 Рейтинг 0.00 (0 Голоса(ов))

Обработка металла лазером

 Обработка металла лазером

Вопросы, рассмотренные в материале:

  • Где преимущественно применяется технология обработки металла лазером
  • Какие существуют способы обработки металла лазером
  • Какое оборудование используется для лазерной обработки металлов
  • Каковы особенности лазерной обработки различных видов металла

Научно-технический прогресс позволил сократить долю ручного труда в производстве. Благодаря разработке передовых инновационных технологий процесс металлообработки стал автоматизированным. Обработка металла лазером позволяет повысить сложность, скорость и точность производственных операций. Из этой статьи вы узнаете об особенностях и преимуществах этой современной технологии.

История технологии обработки металла лазером

 История технологии обработки металла лазером

В инновационной технологии обработки металла лазером воплотились все передовые достижения академической физики. Оптический квантовый генератор или лазер был открыт во второй половине XX века. Лазерное устройство лавинообразно генерирует фотоны с одинаковой энергией, направленностью движения и поляризацией и преобразует энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию монохроматического когерентного света. Этот удивительный оптический прибор излучает мощный узконаправленный пучок интенсивного света.

Открытие было высоко оценено физиками и инженерами. В 1962 году, после испытания первого лабораторного квантового генератора, американская фирма «Спектра физикс» разработала и представила на рынке коммерческие лазеры. Это был настоящий революционный прорыв в лазерных технологиях. Позже были созданы различные типы и модификации лазера – от микроприборов до гигантских установок. Например, длина лазерной установки «Нова» в Национальной лаборатории Лоуренса Ливермора в США составляет 137 м, а ее суммарная мощность – 1014 Вт. Лазерное оборудование широко используется в научных и производственных областях.

Уже в 70–80 годы XX века началось интенсивное развитие лазерных технологий, которые с большим успехом применялись в обработке металла: сварке, закалке, наплавке, маркировке, резке. С помощью лазерного оборудования изготавливались различные детали и элементы конструкций: прокладки, кронштейны, дисковые пилы, панели, щитки для приборов, двери, декоративные решетки.

Бесплатная консультация

Изобретение кинематических сложных роботов-манипуляторов и гибких оптоэлектронных лучепроводов позволило расширить возможности лазерной металлообработки. В современном производстве с помощью лазера осуществляется резка пространственных металлоизделий.

Сегодня обработка металла лазером – это высокоэффективный технологический процесс. Лазерные станки являются высокотехнологичным современным оборудованием благодаря уникальным свойствам лазера: высокой мощности излучения – до 108-109 Вт/см2 в непрерывном режиме и до 1016-1017 Вт/см2 в импульсном.

Лазерный луч легко управляется автоматизированными системами. Мощное излучение мгновенно нагревает и прожигает сфокусированную зону. При охлаждении металла заготовка не деформируется и сохраняет свою форму. Область резки очищается от продуктов сгорания способом продувки с использованием технологического газа: кислорода, азота, воздуха.

В каких сферах применима обработка металла лазером

 В каких сферах применима обработка металла лазером

Открытие лазера можно назвать одним из самых значимых научно-технических достижений XX века. Разработка универсальных лазерных технологий способствовала рождению современных направлений научной и технической оптики, появлению новых промышленных отраслей.

Лазерные технологии применяются не только для обработки различных материалов, они стали незаменимым элементом специализированных информационных систем, широко используются в науке, медицине, при создании военной техники.

Лазерная резка, в отличие от механического метода, является более эффективным и экономически выгодным способом раскроя любых металлических листов. Такой метод металлообработки не наносит вреда материалам, полностью исключает деформацию, не требует дальнейшей постобработки.

При обработке металла лазером снижается расход материалов. Современные лазерные станки оснащены специальными программами, которые автоматически помогут рассчитать наиболее экономичный способ раскроя материала.

Лазерная металлообработка является универсальной и востребованной в различных производственных областях: строительстве, машиностроении, станкостроении. С помощью лазера можно изготовить не только крупные массивные детали, но и хрупкие декоративные элементы.

Преимущества и недостатки обработки металла лазером

 Преимущества и недостатки обработки металла лазером

Лазерная обработка является самым эффективным и высококачественным способом резки различных металлов. Весь технологический процесс раскроя автоматизирован и выполняется по заданным критериям. Лазер хорошо режет любые металлы с различными показателями теплопроводности.

Высокая энергетическая мощность лазерного луча обеспечивает расплавление металла в области резки. Но при этом полностью исключается даже минимальная деформация заготовки, так как зона термического воздействия очень ограничена. Эта особенность позволяет использовать лазерную технологию для обработки мягких металлов.

Преимущества обработки метала лазером:

    • Полностью исключается механическое воздействие на заготовку или деталь. Лазерная технология позволяет резать мягкие, хрупкие материалы без риска деформации.
    • Возможность обрабатывать твердые сплавы.
    • Высокая точность раскроя и реза. Кромка в зоне резки очень ровная, отсутствуют наплывы, заусеницы и другие дефекты.
    • Не требуется последующая дополнительная обработка готовых изделий.
    • Есть возможность вырезать заготовки и детали даже самой сложной геометрической формы.
    • Простота и легкость управления оборудованием. Рисунок детали выполняется в чертежной программе и переносится в компьютер лазерного оборудования для выполнения резки.
    • Высокая производительность. Обработка металла лазером происходит в 10 раз быстрее, чем резка с помощью газовой горелки.
    • Высокая скорость раскроя тонколистового проката.
    • Максимальная экономия расходных материалов за счет компактного размещения деталей на листе.
    • Экономическая эффективность. Снижение затрат при изготовлении небольших партий деталей, так как отсутствует необходимость изготовления форм для прессования или литья.

Недостатки обработки метала лазером:

      • Высокая стоимость оборудования.
      • Низкая эффективность обработки металлов и сплавов с высокими отражающими свойствами: алюминием, нержавеющей сталью.
      • Допустимая максимальная толщина металлического листа – 20 мм.

Виды обработки металла лазером

В современном промышленном производстве все чаще применяются лазерные установки. С помощью этой уникальной технологии осуществляется резка, формовка, стыковка материалов. Лазерным лучом можно нанести покрытие или изменить свойства различных материалов: металла, пластмассы, древесины, бумаги и металла.

Наиболее востребованными лазерными технологиями являются: прямое лазерное спекание (DMLS), лазерная и лазерно-механическая гибка, лазерная резка и лазерное сверление, лазерная сварка.

1. Прямое лазерное спекание металлов.

 Прямое лазерное спекание металлов

Технология прямого лазерного спекания позволяет быстро изготовить образцы любых металлических деталей без ограничения в геометрической форме. Таким способом изготавливаются металлические формообразующие вставки пресс-форм для литья полимеров под давлением.

Для выполнения прямого лазерного спекания в компьютер вводятся данные в трех измерениях. С помощью высокотемпературного лазерного луча металлический порошок равномерно и постепенно наплавляется вдоль контура заготовки в соответствии с 3D-данными. Готовые детали отличаются высокой прочностью и могут выдерживать максимальные механические нагрузки.

Прямое лазерное спекание применяется для обработки таких сплавов и металлов, как:

      • высококачественная сталь;
      • инструментальная сталь;
      • титан;
      • алюминий.

2. Лазерная гибка металлов.

 Лазерная гибка металлов

С помощью технологии лазерной гибки осуществляется загибание заготовки. Лазерный луч нагревает зону обработки на плоской металлической пластине. Поверхность, не прогретая лазером, препятствует расширению металла в месте нагрева. Под действием возникшего механического напряжения пластина сгибается. Происходит пластическая деформация металла, вследствие которой пластина после охлаждения сохраняет новую форму.

При выполнении лазерно-механической гибки место сгиба сначала нагревается с помощью лазерного луча, а затем осуществляется механический загиб пластины. Эта технология позволяет уменьшить механическое воздействие в процессе гибки и увеличить относительное удлинение при разрыве металла. Такая обработка металла лазером дает возможность получить больший угол при меньших радиусах изгиба.

3. Лазерная резка металлов.

 Лазерная резка металлов

Технология лазерной резки позволяет с помощью лазерного луча выполнить термическую резку металлических листов или трехмерных заготовок: труб, профилей.

Метод лазерной резки используется в случае, если необходимо быстро и с высокой точностью произвести обработку геометрически сложных, двух- или трехмерных заготовок, сделать трехмерные вырезы в труднодоступных зонах, выполнить бесконтактную резку. Скорость обработки составляет от 10 до 100 и более м/мин. Лазерная резка, по сравнению с вырубкой в штампе, является экономически выгодным способом изготовления даже небольшого количества заготовок.

В производстве могут использоваться комбинированные установки, оснащенные фокусированным лазером высокой мощности для лазерной резки и вырубной головкой для вибрационной высечки и вырубки в штампе. На таком оборудовании можно выполнить две операции – лазерную резку и вырубку в штампе. В таких устройствах обычно применяется углекислотный (газовый), твердотельный или волоконный лазер.

4. Лазерное сверление металлов.

 Лазерное сверление металлов

Обработка металла лазером осуществляется без снятия стружки. С помощью лазерного луча внутрь заготовки локально передается мощный поток энергии. В зоне лазерного воздействия материал ионизируется, превращается в пар (плазму) и испаряется. Чтобы исключить образование наплавления по краю отверстия, образовавшаяся плазма отбрасывается в сторону под давлением, которое возникает между внешней средой заготовки и местом сверления.

      • Одноимпульсное лазерное сверление.

 Одноимпульсное лазерное сверление

Отверстие сверлится за один импульс лазерного излучения. У способа одноимпульсного сверления есть свои недостатки: большая энергозатратность импульса; ограничение толщины заготовки, в которой делаются отверстия; коническая форма отверстий из-за постепенного ослабления тепловой энергии при передаче внутрь материала.

      • Ударное лазерное сверление.

 Ударное лазерное сверление

Отверстие сверлится за несколько импульсов лазерного излучения – лазер несколько раз бьет в одну и ту же точку на заготовке. При каждом импульсе материал испаряется и вытесняется из отверстия под действием испарившейся составляющей. В результате многоимпульсной обработки металла лазером получаются более глубокие (около 100 мм) отверстия, чем при одноимпульсном сверлении.

К преимуществам этого способа сверления можно отнести следующие возможности: сделать отверстия под углом к поверхности заготовки; просверлить отверстия в материалах повышенной твердости, получить качественный результат сверления. Недостатком является более длительный процесс выполнения технологической операции.

      • Лазерное трепанирование (вырезание отверстий).

 Лазерное трепанирование

Отверстие любого диаметра сверлится лазерным лучом, который пульсирует и вращается. После высверливания в заготовке первого отверстия рядом с ним с некоторым перекрытием делается другое. Как показывает практика, наиболее соответствующим является перекрытие от 50 до 80 % площади отверстия.

      • Ударное сверление вращающимся лазерным лучом (лазерным «спиральным сверлом»).

 Ударное сверление вращающимся лазерным лучом

Этот способ сверления по принципу выполнения очень похож на ударное лазерное сверление, разница лишь в том, что лазерный луч дополнительно вращается. Лазерное «спиральное сверло» снимает с заготовки материал в виде стружки-спирали. Метод ударного сверления вращающимся лучом позволяет добиться высокого качества обработки металла лазером.

5. Лазерная сварка металлов (LBW).

 Лазерная сварка металлов

Лазерная сварка применяется для соединения нескольких металлических деталей. Лазерный луч является концентрированным источником тепловой энергии. Такая сварка отличается большой глубиной и высокой скоростью выполнения сварочной операции. В результате получается тонкий и качественный сварной шов. Технология лазерной сварки часто используется в машиностроении.

Для электронно-лучевой (EBW) и лазерной сварки характерна высокая плотность энерговыделения (в среднем 1 МВт/см2). Тепловая мощность луча обеспечивает большую скорость нагрева и быстрое охлаждение рабочей зоны. Термическое влияние лазера распространяется на небольшие области заготовки.

Для сварки используются только лучи небольшого диаметра, размер лазерного пятна варьируется от 0,2 мм до 13 мм. Энергетические затраты зависят от глубины проникновения луча и положения фокальной точки. Чем больше глубина проникновения, тем выше энергозатратность. При расположении фокальной точки ниже поверхности заготовки расходуется максимальное количество энергии.

Выбор непрерывного или пульсирующего лазерного луча зависит от свойств свариваемых заготовок. Для соединения тонких материалов (например, лезвия бритвы) выбирают импульсы длительностью порядка миллисекунд, а для выполнения глубокой сварки необходим непрерывный лазерный луч.

Лазерную сварку называют универсальной технологией, так как с ее помощью можно выполнить соединение деталей из различных металлов и сплавов: алюминия, титана, сталей (нержавеющих, углеродистых, высокопрочных низколегированных).

Лазерная сварка, как и электронно-лучевая, отличается высоким качеством. Но высокая скорость охлаждения при сваривании высокоуглеродистых сталей может привести к растрескиванию шва. Скорость сварки зависит от количества затраченной энергии, типа заготовок и толщины металла. Газовые лазеры обладают высокой мощностью и преимущественно используются для крупносерийного производства в автомобилестроении.

Какое оборудование используется для обработки металла лазером

 Какое оборудование используется для обработки металла лазером

Оборудование для лазерной металлообработки различается по источникам излучения и выходной мощности, которая определяет металлический материал. Твердотельные (на гранате с неодимом Nd:YAG) квазинепрерывные и импульсно-периодические лазерные источники с выходной мощностью от 100 до 300 Вт предназначены для обработки черных металлов и нержавеющей стали. Газовые непрерывные СО2 лазерные источники с выходной мощностью до 2500 Вт используются для обработки черных металлов легированных сталей и некоторых других видов сплавов.

В комплект оборудования для обработки металла лазером входит:

      • лазер, оснащенный системой охлаждения и системой питания;
      • координатный стол для крепления заготовки;
      • компьютерная система управления координатным столом;
      • устройство подачи технологического газа;
      • вентиляционная система.

 Комплект оборудования для обработки металла лазером

Для обработки металла используется лазер с очень большой мощностью излучения. Чтобы предупредить его перегрев, лазерная установка оснащена двухконтурной водяной системой охлаждения или холодильным компрессором на фреоне. Выбор источников питания лазера зависит от практикоориентированных технологических задач. Трансформаторные схемы питания способны выдерживать большие нагрузки, обеспечивают непрерывную работу и считаются более надежными. При минимальных мощностях используются импульсные блоки питания.

Координатный стол – это высокоточное автоматизированное оборудование, оснащенное портальной схемой. Заготовка, неподвижно закрепленная на координатном столе, режется лазерным лучом, который перемещается по координате. Но могут быть и другие схемы. Например, при резке Nd:YAG лазерный луч перемещается по одной координате, а стол с закрепленной заготовкой двигается по другой координате.

Промышленная компьютерная система для управления координатным столом оснащена различными аппаратными устройствами: приводом, датчиками и т. д. Все поставленные задачи выполняются с помощью программного обеспечения, в состав которого входят:

      • Программа ввода исходных данных (электронных чертежей) в графических редакторах AutoCad, CorellDraw, Adobe Illustrator и др. Используются следующие форматы данных: *.plt, *.ai, *.dxf, *.cf2.
      • Программа управления поворотом, масштабированием, размножением исходного файла (электронного чертежа) по рабочему полю стола.
      • Программа настройки параметров лазерной обработки и режима врезки, автоматического учета ширины реза, определения внутренних и внешних контуров, корректировки режима резки непосредственно в технологическом процессе.
      • Программа настройки параметров координатного привода и рабочей среды оператора, генерации (рисования) простейших геометрических форм.
      • Программа подключения внешних устройств, управления лазерным излучателем, обеспечения связи с внешней локальной сетью.

 Лазерная резка

При выполнении лазерной резки используется различный технологический газ – кислород для щадящей резки черных металлов, инертный газ азот для нержавеющей стали. При прожигании материала лазерным лучом образуются газообразные и аэрозольные продукты распада. Их удаление осуществляется с помощью специальной вентиляции, которая является обязательным элементом любой промышленной установки для обработки металла лазером.

Для того чтобы лазерный луч попадал точно в цель, оборудование оснащено системой зеркал «летающая оптика». Альтернативой является комплекс деформируемых зеркал, в котором сочетаются стационарные и «портальные» схемы. Луч, прежде чем попасть в сфокусированную точку, отражается в зеркалах и дважды меняет траекторию движения. И хотя в такой системе отсутствует сложная механика, к ее главным недостаткам можно отнести трудности в управлении зеркальными поверхностями.

Современная лазерная установка – это сложный механизм, отличающийся простотой управления. Лазерное оборудование обеспечивает высокую скорость и точность металлообработки.

Компьютерное оснащение позволяет полностью исключить фактор человеческой ошибки, способствует экономичному расходу материалов, гарантирует высокое качество каждого готового изделия.

Полная автоматизация всех операций обеспечивает постоянство сфокусированных лучей. Вся энергия с помощью линз совмещается в один мощный лазерный луч, который при соприкосновении с материалом нагревает поверхность в зоне линии разреза. В то же время остальная область заготовки остается холодной. В результате обработки детали не деформируются, на их поверхности отсутствуют какие-либо дефекты.

Особенности обработки различных видов металла лазером

1. Лазерная обработка алюминия.

 Лазерная обработка алюминия

Алюминиевые заготовки обрабатываются по заданному автоматизированному шаблону. На начальном этапе в программу загружаются исходные данные – электронные чертежи будущей детали. К выполнению этого процесса не привлекаются узкие специалисты. С помощью компьютера рассчитывается наиболее рациональное расположение формы детали на металлическом листе. Процент излишков сведен к минимуму.

Резка стали и деревообработка являются наиболее востребованными технологиями в промышленном производстве.

В сфокусированную на заготовке точку вместе с лазерным лучом подается поток воздуха, который увеличивает энергию излучения, удаляет продукты плавления и шлаки.

Алюминий – мягкий материал, обладающий высокой теплопроводностью. Он быстро поглощает тепловую энергию лазера. Для многих небольших производственных цехов это свойство металла является проблемой, так как для работы с ним необходим мощный лазер.

Особенности обработки алюминия лазером:

      • невысокая производственная скорость, так как высокоскоростные установки не обеспечивают необходимый контроль деформации заготовки;
      • отсутствует прямой контакт с материалом в процессе всей операции, лазерный луч прожигает поверхность алюминиевого листа;
      • продувная зона обеспечивает полную очистку контура;
      • при правильно загруженном чертеже автоматизированная установка позволяет изготовить детали самой сложной формы;
      • при работе с алюминием ошибки исключены, система ЧПУ полностью контролирует весь технологический процесс.

При обработке мягкого металла лазером к крепежным элементам предъявляются особые требования, это особенно актуально для устаревших лазерных установок. Для лазерной резки не требуется закрепление заготовок – деталь кладется на координатный стол, а лазерная установка автоматически выполняет все операции в соответствии с введенными данными, загруженными электронным чертежом.

2. Обработка нержавеющей стали.

 Обработка нержавеющей стали

Нержавеющая сталь обладает высокой сопротивляемостью к любому виду физического и энергетического воздействия. Поэтому обработка этого сплава является непростым энергозатратным процессом.

Особенности обработки нержавеющей стали лазером:

      • Раскрой материала осуществляется бесконтактным способом, в результате этого полностью исключается даже самая незначительная деформация деталей.
      • Даже при высокой сопротивляемости материала отсутствует фактор погрешности.
      • При лазерной резке листовой стали не образуются дефекты, такие как: заусеницы, отслоение краев, заусениц, деформация кромки края.
      • Сокращение временных затрат, следовательно, и снижение стоимости выполнения работ.
      • Показатель мощности лазерного оборудования не должен иметь каких-либо ограничений по толщине материала или заготовок. Раскрой любого стального листа осуществляется равномерно, в соответствии с электронным чертежом.

Основным преимуществом обработки нержавеющей стали лазером является высокое качество деталей и длительный период их эксплуатации.

Нержавеющая сталь устойчива к коррозии и процессам окисления. Лазер нисколько не снижает физические характеристики нержавеющих сплавов.

3. Обработка лазером меди и латуни.

 Обработка лазером меди и латуни

Чтобы обеспечить правильный раскрой листов меди, необходимо выставить правильные параметры установки ЧПУ, именно от этого будет зависеть качество изготовленных деталей. Резка выполняется на низких скоростях и при максимальной мощности лазера. Несоблюдение технологических правил отразится на конечном результате – нарушится структурная целостность заготовки, произойдет деформация кромок.

Для лазерной резки латуни нет необходимости в особой настройке программы, достаточно выставить стандартные параметры ЧПУ. Лазерная технология гарантирует изготовление деталей высокого качества. В процессе обработки металла лазером не нарушаются физические свойства материала, исключается деформация изделий и образование дефектов. Подобную резку можно по праву назвать современной технологией ювелирной металлообработки.

Почему следует обращаться к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

  • Особенности лазерной резки листовой стали и мониторинг качества образцов после лазерного воздействия

    Особенности лазерной резки листовой стали и мониторинг качества образцов после лазерного воздействия

    Представлено описание автоматизированного лазерного комплекса с квантовым генератором мощностью 8 кВт, качество пучка которого не хуже, чем у одномодового лазера. Показана возможность использования такого комплекса в заготовительном производстве для резки листовых углеродистых и нержавеющих сталей. Контроль качества материала заготовок показал, что его свойства соответствуют стандартам. Ключевые слова: технологические газовые лазеры, самофильтрующие резонаторы, газолазерная резка листового металла, технологические параметры, структура и свойства заготовок
  • Чертежи для лазерной резки: точность – гарантия правильной и быстрой работы

    Чертежи для лазерной резки: точность – гарантия правильной и быстрой работы

    В настоящее время лазерные технологии используются в самых разных видах человеческой деятельности. А резка с помощью лазерного луча вообще лидирует среди всех известных способов раскроя материалов. Работа выполняется быстро и аккуратно, особенно при задействовании станка с ЧПУ. В этом случае используется специальная программа, для создания которой необходимы чертежи для лазерной резки.
  • Устойчивость сварочных столов как одно из основных требований к конструкциям

    Устойчивость сварочных столов как одно из основных требований к конструкциям

    За последние пару десятков лет технологии сварки претерпели немало изменений. Постоянный поиск эффективных и доступных решений, которые могли бы облегчить операцию и сделать ее более универсальной, дал свои результаты. Появились новые, улучшенные модели сварочных аппаратов и поменялся состав электродов. Столы для сварки тоже изменились. Теперь их изготавливают из более качественных материалов. Благодаря этому функциональность, надежность и устойчивость сварочных столов сейчас на довольно высоком уровне. В наши дни ни один сварочный процесс не проходит без такой установки. Она оснащена множеством приспособлений, которые позволяют работать с самыми сложными металлоконструкциями.
  • Услуги плазменной резки: точно, аккуратно, выгодно

    Услуги плазменной резки: точно, аккуратно, выгодно

    Технология плазменной резки идеальна для металлообработки листов высоколегированной стали. Любой специалист подтвердит, что механические способы резания на обычном станке или с помощью болгарки не могут обеспечить такой точности, как плазмотрон, из-под резца которого выходят детали, четко соответствующие чертежам. При этом отходы металла минимальны. Какой принцип работы у плазмотронов, почему стоит заказывать услуги плазменной резки, а также ряд других вопросов рассмотрим в этом материале.
  • Струбцины для сварочного стола: их виды и характеристики

    Струбцины для сварочного стола: их виды и характеристики

    Одним из основных элементов, которыми оснащаются все сварочные столы, являются струбцины. Удобство и многообразие форм оснастки позволяет сварщику комфортно и легко работать с заготовками, различными по размеру и конструкции. За счет использования этих вспомогательных элементов подготовительный этап сварочных работ существенно упрощается. В статье поговорим о том, что представляют собой струбцины для сварочного стола.
  • Методы бережливого производства для сокращения потерь и увеличения эффективности

    Методы бережливого производства для сокращения потерь и увеличения эффективности

    По максимуму исключить производственные потери и издержки стремится каждая современная компания. Для этого многие прибегают к такому методу управления, как бережливое производство. Концепция подразумевает участие всех без исключения сотрудников в оптимизации предприятия. Ниже мы подробно разберем методы бережливого производства, рассмотрим все необходимые инструменты и способы внедрения.
  • Система кайдзен: как грамотно внедрить ее на производстве

    Система кайдзен: как грамотно внедрить ее на производстве

    Современные компании из Японии занимают лидирующие позиции в самых разных сферах производства, выводя страну на четвертое место в мировом рейтинге по объему ВВП. Успех этого государства объясняется, с одной стороны, высокой работоспособностью его жителей, а с другой – использованием грамотной управленческой стратегии. Именно о ней и пойдет речь в нашей статье – вы узнаете, что такое система кайдзен, на какие основные принципы она опирается, может ли дать столь высокие результаты на вашем предприятии и как ее правильно внедрить.
  • Металлические стеллажи для склада: преимущества, разновидности, правила выбора

    Металлические стеллажи для склада: преимущества, разновидности, правила выбора

    Правильное обустройство складского помещения – важная задача, от решения которой зависит скорость погрузки и разгрузки товара, удобство поиска нужных наименований, общий вид помещения и т. д. Системы хранения должны обладать максимальной вместимостью, а также быть прочными, надежными и долговечными. О том, как выбрать металлические стеллажи для склада и на что нужно обратить внимание при покупке, читайте в нашей статье.
  • Лазерная резка металла: разбираемся в тонкостях технологии

    Лазерная резка металла: разбираемся в тонкостях технологии

    Лазерная резка металла производится при помощи специальной установки, формирующей лазерный луч. Благодаря своим свойствам луч способен фокусироваться на поверхности небольшой площади, создавая энергию высокой плотности, быстро разрушая любой материал. Далее вы узнаете обо всех тонкостях резки металла с помощью лазера.

Экспресс расчет
стоимости заказа

Узнайте предварительную стоимость заказа,
отправив нам необходимую информацию:

Добавить файл
Акция