Гибка листового металла по радиусу: сферы использования технологии

Гибка листового металла по радиусу

 

Вопросы, рассмотренные в материале:

  • Где востребована технология гибки листового металла по радиусу
  • Как подготовить листовой металл к гибке по радиусу
  • Как осуществляется гибка листового металла по радиусу
  • Как выполняется гибка труб по радиусу

Листовой металл может обрабатываться на специальных листогибочных установках. Гибка листового металла по радиусу осуществляется путем изгиба металлического листа на заданный угол по заданному радиусу. Количество сгибочных шагов при этом зависит от требуемой степени округленности сгибаемого участка. Благодаря гибке можно отказаться от операций сварки и штампования и тем самым снизить конечную стоимость готовой детали. Рассмотрим эту технологию более подробно.

Для чего предназначена технология гибки листового металла по радиусу

 

При строительстве и ремонте многие сталкиваются с задачей сгибания профильной трубы точно под требуемым углом, без изломов, деформаций и повреждения материала.

Решение есть: трубу следует сгибать только на специализированном гибочном оборудовании, исключающем любые повреждения металлопроката, в том числе круглого сечения. Для этого обязательно необходим профессиональный станок.

Сегодня гибочная операция листовых заготовок по определенному радиусу широко применяется в различном производстве. Например, данной технологией пользуются при обработке:

  • профилей;
  • навесных фасадов;
  • козырьков и карнизов;
  • предметов декора в интерьерах;
  • элементов мебели;
  • уличных урн и т. д.

Для радиусной гибки листового металла может использоваться как специализированное, так и универсальное оборудование, способное правильно обрабатывать материал путем пластической деформации. Сгибание листового металла по радиусу может учитывать различные характеристики заготовки, исходя из требований заказчика к конечному продукту и из типа используемого материала. Технология позволяет создавать продукт любой степени сложности, полностью соответствующий требованиям и ожиданиям заказчика.

Расчеты перед гибкой листового металла по радиусу

 

Технология гибочного процесса металлических листов разрабатывается в несколько этапов в следующем порядке:

  • конструктивный анализ изделия;
  • расчет необходимого усилия;
  • выбор подходящего типоразмера оборудования;
  • создание чертежа заготовки;
  • расчет параметров деформирования;
  • подготовка проекта инструментальной оснастки.

Выбор материала заготовки и ее проверка на пригодность являются важным этапом, определяющим, пригоден ли данный материал для процесса штамповки и гибки в соответствии с задаваемыми размерами на чертеже готового изделия. При выполнении этого этапа осуществляются:

  • определение пластических характеристик листового материала и сверка результатов определения с реальными напряжениями, возникающими в процессе сгибания (при использовании слабопластичных материалов данная операция производится в несколько переходов с использованием межоперационного отжига, повышающего пластичность);
  • определение минимального радиуса гибки листового металла, при котором минимизируется риск образования трещин в материале;
  • выявление возможных деформаций заготовки или профиля после обработки материала давлением в случае сложной конфигурации готового изделия.

По результатам этого этапа принимается одно из решений:

  • замена металлической заготовки на более пластичную;
  • нагрев листового металла перед процессом деформации;
  • предварительная разупрочняющая термообработка заготовки.

При разработке технологии крайне важно определить минимальный угол гибки, ее радиус и угол пружинения выбранного листового материала.

Бесплатная консультация

Радиус гибки (rmin) определяется в зависимости от пластичности листового металла, от его размеров и от возможной скорости сгибания листа. При уменьшении минимального радиуса уменьшается и первоначальная толщина листового металла. Интенсивность утонения характеризуется коэффициентом утонения λ, значение которого в процентах показывает степень уменьшения толщины готовой детали. Если этот коэффициент превышает критическое для данного материала значение, исходную толщину листа (s) требуется увеличить в соответствии со следующей таблицей:

 

Минимальный радиус гибки зависит также от расположения волокон металлического листа. При слишком малом радиусе наружные волокна могут рваться, нарушая целостность детали. Поэтому данное значение должно рассчитываться по наиболее деформируемым частям металлической заготовки в зависимости от значения ее относительного сужения (ψ). В расчете обязательно учитывается также значение наибольшей деформации заготовки.

Листовой металл подвержен эффекту пружинения, возможность этого эффекта определяется фактическими углами пружинения (β):

 

Как производится гибка листового металла по радиусу

Гибочная операция считается одним из главных способов обработки листового металла, создающая основную форму будущей детали из заготовки. Фактически эта операция придает плоской заготовке требуемую объемную форму.

Сначала лист металла подготавливается в гибочном станке на специальном заготовительном участке. Зачастую заготовка предварительно разрезается на полосы необходимой ширины — штрипсы. Затем уже эти штрипсы деформируются в соответствии с требованиями либо вручную, либо с помощью станка.

В некоторых случаях требуется радиусная гибка листового металла, при выполнении которой заготовка подвергается деформации на нужный угол с заданным значением радиуса. Следует при этом учитывать некоторые особенности прокатного металла:

  • Металл в результате прокатки приобретает волокнистую структуру. Во избежание появления трещин процесс сгибания нужно осуществлять поперек волокон либо гнуть лист таким образом, чтобы линия изгиба образовывала с направлением волокон угол примерно 45 градусов.
  • Листовой металл обладает пределом текучести, при превышении которого лист рвется.

 

Место сгиба листового металла претерпевает следующие изменения:

  • истончение металла и его деформация в поперечном сечении;
  • смещение нейтрального слоя в сторону меньшего радиуса.

Нейтральный слой изначально проходит:

  • в листах симметричного сечения (квадратного, круглого, прямоугольного, овального и др.) посередине между двумя сторонами;
  • в листах несимметричного сечения (полукруглых, треугольных и др.) через его центр тяжести.

Если гибка больших по площади листовых металлических заготовок на большем и на малом радиусе практически не отличается друг от друга, то в случае небольших заготовок имеются значительные отличия:

  • при деформации металла с малым радиусом зона деформации охватывает большую часть заготовки;
  • в случае гибки с большим радиусом данный эффект отсутствует.

В процессе гибки поперечное сечение обрабатываемого участка приобретает форму параболы. Поэтому такой способ обработки листового металла связан со сложностью технологии и требует высокоточных расчетов.

Нейтральный слой листовой заготовки всегда имеет постоянную длину, и потому он служит основой при расчете длины обрабатываемой заготовки и допустимого радиуса ее изгиба.

Как рассчитать усилие гибки листового металла по радиусу

 

Гибочное усилие рассчитывается в зависимости от пластичности металлического листа и от скорости его упрочнения в процессе деформирования. Учитывается при этом и направление прокатки листового металла, поскольку в результате этого процесса в свойствах металла появляется анизотропия: внутренние напряжения по оси прокатки меньше напряжений в поперечном направлении. Следовательно, при сгибании листа вдоль волокон металла с одинаковой степенью деформации вероятность разрыва заготовки значительно снижается. По этой причине ребро гиба на листе ориентируют так, чтобы угол, образованный линиями направления прокатки и расположения заготовки в листе, стремился к минимальному.

Расчет усилий также зависит от способа деформирования заготовки. Деформирование может производиться путем укладки листовой заготовки по фиксаторам или упорам и последующей свободной гибки. Либо заготовка деформируется через усилие, возникающее при упоре заготовки на рабочую область матрицы на заключительном этапе гибочного процесса. Первый вариант менее энергозатратен, однако во втором случае в результате калибровки получаются более точно выполненные изделия.

Момент гибки металлов с малым упрочнением (малоуглеродистая сталь, алюминий) определяется по формуле:

M=1,15σт (s2/4),

где σт — предел текучести обрабатываемого металла перед штамповкой.

При угле гиба, превышающем 45 градусов, имеет значение интенсивность упрочнения листового металла, зависящая от размеров сечения заготовки:

M= (1,5σтbs2)/6,

где b — ширина заготовки.

Технологическое усилие Р для свободной одноугловой гибки рассчитывается по следующей формуле:

P=(0.33bse2 (1,5+∈) σв ))/(rmin) sin α⁄2),

где ∈=1/((2rmin/s)+1)  — наибольшее значение деформации по сечению заготовки; α — угол гиба;

σв — предел прочности материала.

Формула для расчета технологического усилия Р в случае несвободной гибки с калибровкой выглядит следующим образом:

P = pпр Fпр,

где Fпр – площадь проекции обрабатываемой листовой заготовки;

pпр — удельное усилие несвободной гибки с калибровкой, зависящее от материала и имеющее значения:

для алюминия: 30-60 МПа;

для малоуглеродистой стали: 75-110 МПа;

для стали со средним содержанием углерода: 120-150 МПА;

для латуни: 70-100 МПа.

Вычисленное значение усилия при выборе подходящего типоразмера увеличивается на 25-30% и затем сравнивается с номинальными показателями.

Особенности гибки труб по радиусу

 

Трубопроводы применяются в самых разных отраслях производства. Радиусная гибка труб является одним из главных процессов при монтаже трубопроводных систем всех видов. Благодаря данному технологическому процессу значительно сокращается число сварных швов и сохраняется высокое качество монтажных работ.

Технология радиусного сгибания стальных трубопроводов позволяет частично или полностью сгибать трубы в плавную изогнутую конфигурацию, не зависящую от сечения трубы. Полый стальной профиль, подвергаемый сгибанию, испытывает сжимающую силу по внутреннему радиусу и растягивающую силу по внешнему радиусу. Данный процесс имеет особенности, которые нужно учитывать:

  • при загибе участок трубы может деформироваться таким образом, что нарушится соосность трубы;
  • действующие на наружную стенку растягивающие радиальные силы при сгибании могут повлечь за собой разрыв стенки;
  • на внутреннем радиусе сгибаемой части в результате действия сдавливающих тангенциальных сил при неравномерном деформировании могут образоваться складки в форме гофры.

Для правильной гибки по радиусу используются два основных метода:

  • холодный метод сгибания;
  • сгибание трубы с предварительным разогревом участка.

Холодную гибку применяют, как правило, на трубах малого диаметра. При этом требуется знать минимальный радиус сгибания трубы вдоль ее оси.

Второй метод с разогревом более благоприятен для деформирования трубы, поскольку повышается пластичность материала и снижается вероятность появления разного рода дефектов. Обычно этот метод применяется для труб большого диаметра, так как он занимает больше времени для осуществления операций и более трудозатратен.

И в том, и в другом случае необходимо знание технологического процесса, обеспечивающего сохранение равного сечения на всем участке радиусной гибки без образования складок и трещин на стенках.

Какое оборудование используется для гибки труб по радиусу

 

Используемые при монтаже коммунальной системы стальные трубопроводы малого диаметра обрабатываются в основном ручными инструментами холодным способом гибки. Методы гибки с применением инструментария используются следующие:

  • шаблонная обкатка труб круглого сечения диаметром до 76 мм (на станках при обработке таким методом не удастся добиться нужно качества округлости);
  • намотка заготовки на неподвижный ползун с одновременным продольным движением обкатывающего ролика;
  • использование гидро- или пневмоцилиндра, передающего усилие, с упором на 2 подвижных ролика;
  • протягивание заготовки через направляющие подвижные ролики, позволяющие делать отводы с небольшими углами радиуса (метод применяется на универсальных гибочных установках).

Способы радиусной гибки квадратных или прямоугольных труб аналогичны применяемым способам для круглых стальных труб. Основное отличие состоит в используемой оснастке гибочных станков: прокатных роликах, обкаток и шаблонах. Они имеют соответствующую форму сечения обрабатываемой заготовки. Гибка труб большого сечения осуществляется только горячим способом с использованием одного из двух методов:

  • метод деформации на штампе, позволяющими создавать несколько сгибов на одной заготовке в одной плоскости либо сразу в нескольких;
  • метод протяжки с использованием специального рога, позволяющий выполнять деформирование с минимальным радиусом и с заданной его кривизной — диаметр обрабатываемой трубы при этом остается постоянным благодаря одновременной калибровке на внутреннем сердечнике.

Почему следует обращаться к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

  • Сварочно-монтажные столы

    Сварочно-монтажные столы

    16мм System – множество применений Сборочно-сварочные столы System16 - функциональность и надежность Компания «ВТ-Металл» разрабатывает и собирает столы для сварки и сборки деталей. Кроме того, мы выпускаем всю необходимую оснастку к ним. Мы предлагаем оборудование, подходящее как для серийного производства, так и для небольшой мастерской, где создаются штучные изделия. При этом наши сварочно-монтажные столы используются и в строительстве, и в металлообработке, и в автомобилестроении – словом, там, где важна надежность результата, скорость и точность работ. Ведь разнообразие сварочной оснастки к столам позволяет создавать любые, даже самые сложные конструкции. А наш гибкий и нестандартный подход в сочетании с опытом в производстве такого оборудования позволяет предлагать лучшие решения на сегодняшний день. Цены на типовые размеры столов Размер столаНаименованиеСтоимость Сварочно-монтажный стол СМС - 500х1000 smsg-10051016 46 500 руб. Сварочно-монтажный стол СМС - 800х1200 smsg-12081016 82 000 руб. Сварочно-монтажный стол СМС - 1000х1000 smsg-10101016 85 000 руб. Сварочно-монтажный стол СМС - 1200х1200 smsg-12121016 119 000 руб. Сварочно-монтажный стол СМС - 1500х1000 smsg-15101016 123 500 руб. Сварочно-монтажный стол СМС - 1500х1500 smsg-15151016 181 250 руб. Сварочно-монтажный стол СМС - 2000х1000 smsg-20101016 162 000 руб. Сварочно-монтажный стол СМС - 2400х1200 smsg-24121016 240 000 руб. Сварочно-монтажный стол СМС - 3000х1500 smsg-30151016 358 500 руб. Набор №1 "Начальный" 18 предметов  n1-0101816 36 936 руб. Набор №2 "Базовый" 49 предметов  n1-0104916 93 062 руб. Набор №3 "Стандартный" 84 предметов  n1-0108416 164 266 руб. Набор №4 "Профессиональный" 117 предметов  n1-0111716 262 266 руб. Если вы не нашли приемлемый для вас размер стола, мы изготовим его на заказ. Производим сварочно-монтажные столы от 1000х500 до 3900х1900. ИНДИВИДУАЛЬНЫЙ ЗАКАЗ ВЫПОЛНИМ ЗА 14 ДНЕЙ Рассчитайте стоимость стола по индивидуальным параметрам Рассчитать стоимость   Характеристики стола System 16: СИСТЕМНОЕ ОТВЕРСТИЕ 16мм ТОЛЩИНА МАТЕРИАЛА от 10мм  до 12мм БОКОВАЯ СТЕНКА - высотой 100 мм - расстояние между отверстиями 50 мм - шаг матричной сетки 50 мм Высота опор  750 мм НАГРУЗКА на 4 опоры = 2.000 кг на 6 опор = 3.000 кг РЕБРА ЖЕСТКОСТИ Множественные ребра внутри стола служат для обеспечения большей стабильности и точности  Универсальность – одно из главных отличий сборочного стола для сварки от «ВТ-Металл». Объединяя различные элементы: плиты, опоры, детали оснастки для сварки – вы можете создать целый комплекс, решающий именно ваши задачи. С помощью 16мм системы возможно производство различных изделий. Причем, перенастройка оборудования для создания новых деталей, как и для внесения изменений в конструкцию уже существующего изделия, делается очень легко и быстро. Множество вариантов использования, благодаря оснастке различных типов, делает это оборудование незаменимым, позволяя организовать полноценное производство с минимумом вложений.
  • Навесные кронштейны

    Навесные кронштейны

    Навесные кронштейны Создание вентилируемых фасадов невозможно без монтажных кронштейнов. Главное назначение этих элементов – воспринимать действующую нагрузку и передавать ее к несущей конструкции строения. Правильно выбранный кронштейн для навесных фасадов обеспечивает надежность и безопасность всей системы. На общую прочность конструкции влияют следующие факторы:   вес облицовочных элементов; отклонение поверхности стены от вертикали; величина вылета; шаг размещения кронштейна в навесном фасаде. Еще одно назначение данных элементов – крепление на стене оборудования и иных тяжелых предметов. Такой кронштейн для навесных агрегатов должен выдерживать тяжесть устройства, обеспечивать удобство обслуживания, поэтому его следует заказывать только у проверенных изготовителей. Наша компания предлагает комплексный набор услуг по изготовлению металлических изделий простых и сложных конструкций. Благодаря новейшим станкам с программным обеспечением, использованию лазерной резки мы имеем возможность быстро изготовить необходимое количество навесных кронштейнов. Вы можете заказать у нас как стандартные конструкции, так и детали, изготовленные по чертежам, разработанным индивидуально. Мы гарантируем достойное качество работы соответственно Вашим требованиям. Чтобы сделать заказ, Вы можете обратиться к нам по телефону +7(495) 960-62-45 или написать по адресу info@vt-metall.ru
  • Фасадные кронштейны

    Фасадные кронштейны

    Фасадные кронштейны Кронштейны на фасаде предназначены для закрепления несущего профиля на внешней стене. Их размеры, материал и конструкция зависят от структуры поверхности и материала облицовки. Кронштейн выполняет основную несущую функцию. Поэтому от того, насколько правильно он выбран, в конечном итоге зависит надежность всей фасадной системы. Изготовление таких элементов является одним из ведущих направлений производственной деятельности компании Vt-metall. Изделия нашли применение в следующих сферах: в строительной индустрии, архитектуре. В качестве кронштейнов для фасадных систем используются изделия из алюминия и оцинкованной стали. Наша компания производит оба вида перечисленных деталей как стандартных размеров, так и по чертежам заказчика. Фасадный кронштейн из оцинкованной стали Фасадные кронштейны с оцинкованной поверхностью используются в стальных системах, где все они являются несущими, независимо от расположения. Таким образом, вес облицовки равномерно распределяется по всей площади. Коэффициент теплового расширения стали сравнительно невелик (9,9 Х 10-6 м/мК против 22,2 Х 10-6 м/мК у алюминия), поэтому все соединения надежно зафиксированы, не имеют термических швов. Наша компания изготавливает оцинкованные кронштейны из металлических листов, после чего на поверхность деталей гальваническим методом наносится антикоррозионный слой цинка. Благодаря такому защитному покрытию детали получают устойчивость к внешним атмосферным воздействиям и коррозии. Мы предлагаем нашим клиентам различные стальные кронштейны для фасадов. Наиболее прочными являются детали с двумя ребрами жесткости, выдерживающие значительные нагрузки на изгиб. Одной из наиболее востребованных конструкций является «Сканрок». Благодаря продуманному строению он при малой толщине (1−2,5 мм, стандарт – 1,2 мм), может использоваться при навешивании тяжелой облицовки (керамогранита, стальных кассет, фиброцемента) в одно- и двухконтурных фасадных системах. Жесткость крепления узлов обеспечивается заклепками и/или саморезами. Фасадный кронштейн из алюминия Такой кронштейн изготавливается из алюминиевых сплавов, обладающих необходимым запасом прочности. Он нашел основное применение в обустройстве вентфасадов с алюминиевой подсистемой. В зависимости от положения в конструкции элемент может быть ветровым или несущим, что влияет на его вид и расположение/форму отверстий для крепежа. Проконсультироваться с нами, чтобы заказать, выбрать или купить фасадные кронштейны, можно по телефону +7 (495) 960-92-45 или электронному адресу info@vt-metall.ru.

 

Получите консультацию нашего специалиста:

Задавайте свои вопросы или закажите предварительный расчет стоимости работ,
чтобы убедиться – у нас доступные цены и оперативное исполнение

Акция