Современная технология сварки аргоном

Современная технология сварки аргоном

 

Вопросы, рассмотренные в материале:

  • Каковы особенности технологии сварки аргоном
  • Какие существуют технологии сварки аргоном различных металлов
  • Как проходит сварка алюминия аргоном

Технология сварки с использованием высокотемпературной дуги широко применяется в производстве для соединения металлических деталей. Однако данная технология подходит не для всех сплавов. Некоторые металлы при достижении температуры плавления на открытом воздухе окисляются. В результате структура материала меняется, его полезные технологические свойства теряются. Поэтому используется специальная технология сварки аргоном, когда при нагреве металла электрической дугой применяется инертный газ, защищающий сплав от окисления.

Особенности технологии сварки аргоном

 

Сварка осуществляется в аргонной среде, создающей защиту от окисления в местах соединения двух металлических деталей. Окисление происходит из-за воздействия кислорода, содержащегося в воздухе. Аргон же создает защитную оболочку вокруг зоны обработки и не позволяет кислороду проникать в эту зону.

Аргонная сварка может производиться в ручном, полуавтоматическом и автоматическом режимах. Общепринята более широкая классификация режимов сварочных работ, зависящая как от способа, так и от применяемых электродов. Так, используется два вида электродов: плавящиеся и неплавящиеся. Во втором случае электрод представляет собой вольфрамовую проволоку, обеспечивающую надежное и прочное соединение любых металлов, в том числе разных по свойствам.

 

Методы аргонодуговой сварки классифицируются следующим образом:

  • ручной с использованием неплавящегося электрода РАД;
  • автоматический с применением неплавящегося электрода ААД;
  • автоматический с использованием плавящегося электрода ААДП.

Основные достоинства технологии:

  • относительно низкая температура нагрева, позволяющая сохранить конфигурацию соединяемых элементов;
  • максимальная защита зоны обработки от воздействия кислорода благодаря высокой плотности и инертности аргона;
  • высокая тепловая мощность дуги, позволяющая выполнить работу за достаточно короткое время;
  • простота процесса, благодаря чему использовать технологию могут новички;
  • универсальность применения технологии, позволяющая сваривать различные по свойствам металлы и их сплавы, соединить которые другими способами не получится.

Технология сварки аргоном (видео):

.

Из недостатков технологии:

    • Чувствительность аргонной защиты к ветру и сквознякам.

При ветре газ частично улетучивается, оставляя без защиты соединение и, соответственно, снижая его качество. По этой причине сварочные работы с использованием аргонной струи следует выполнять в вентилируемых закрытых помещениях без сквозняков.

  • Конструктивно сложное сварочное оборудование, трудности при настройке режимов его работы.
  • Необходимость в дополнительном охлаждении соединений при использовании высокоамперной дуги.

 

Аргонная сварка широко применяется для соединения между собой медных, титановых, алюминиевых, бронзовых, стальных изделий, а также элементов из нержавеющей стали и цветных металлов. Сварочные работы с этими металлами представляют определенную сложность, и именно аргонная технология показывает здесь свою наибольшую эффективность. С помощью данной технологии соединяют различные металлические детали, трубы и элементы отделки. Большое распространение в современной промышленности получила технология сварки нержавеющих труб аргоном.

Технология сварки нержавеющих труб аргоном (видео):

 

Технологии сварки аргоном различных металлов

Сварочные работы с применением аргона позволяют создавать герметичный шов, не нуждающийся в последующей обработке. Фактически, таким способом можно соединять детали из всех известных на сегодня металлов и сплавов.

1. Технология сварки алюминия аргоном.

В качестве электродов применяются плавящиеся и неплавящиеся элементы. Для ручного, полуавтоматического и полностью автоматического метода могут использоваться неплавящиеся электроды. Для большей стабильности дуги желательно пользоваться осцилляторами либо импульсными возбудителями. Данным способом имеет смысл соединять металлические детали толщиной 10–12 мм. Элементы из алюминия большей толщины сваривать таким способом невыгодно по причине низкой производительности и перегрева зоны обработки. В данном случае лучше использовать плавящиеся электроды.

Бесплатная консультация

Сварка тонколистового алюминия (толщиной 0,2–2 мм) осуществляется в один проход без использования присадочного материала на съемных или остающихся подкладках. Конец присадочного прутка в случае его применения нежелательно выносить за пределы зоны действия аргона во избежание окисления. Дуга при этом должна быть длиной не более 2,5 мм.

 

Металл толщиной от 6 до 8 мм сваривается «левым способом», позволяющим снизить перегрев соединения. Сваривание изделий из более толстого металла (8–12 мм) рекомендуют выполнять плавящимися электродами, если это возможно. В противном случае пользуются «правым способом», облегчающим контроль выполнения работ.

2. Технология сварки нержавейки аргоном.

Сварка изделий из нержавеющей стали в целом производится стандартным способом с учетом некоторых нюансов:

  • Неплавящийся электрод и присадочную проволоку перемещают исключительно вдоль сварного шва, без поперечных движений. Выход присадочной проволоки из зоны действия инертного газа недопустим.
  • Для улучшения качества сварного шва соединяемые детали желательно обрабатывать аргоном как с лицевой, так и с обратной стороны. Нужно учесть, что расход газа при этом будет увеличен.
  • Запрещается дотрагиваться электродом поверхностей заготовок из нержавейки даже в процессе розжига дуги. Разжигать дугу допускается на угольной или графитовой пластине, после чего дуга переносится на обрабатываемый металл. Для бесконтактного розжига можно воспользоваться осциллятором.
  • После окончания сварочных работ подачу аргона прекращать сразу же не следует. Это нужно для более быстрого остывания сварного шва и электрода, при этом они будут защищены от окисления. Подачу газа можно прекращать через 10–15 секунд после завершения сварочного процесса. Данное правило справедливо для всех металлов.

Технология сварки нержавейки аргоном (видео):

3. Технология сварки латуни аргоном.

 

Латунные изделия варятся с применением аргона чаще всего при толщине металла более 5 мм. Тепло вырабатывается электрической дугой, возникающей между электродом и поверхностью обрабатываемых заготовок. Электрод крепится в зажиме горелки, проводящем электрический ток. Через сопло этой горелки поступает газ. Сварной шов создается из присадочного материала, который по составу должен максимально подходить к металлу обрабатываемых деталей.

Непосредственно перед сварочными работами поверхности заготовок требуется тщательно очистить от грязи и оксидной пленки. В итоге поверхности должны обрести характерный металлический блеск. Оксидную пленку можно удалить с помощью азотной кислоты, после чего заготовки требуется промыть горячей водой. Процесс будет сопровождаться заметным треском, возникающим в результате высвобождения паров цинка – они также окрашивают дугу в необычный цвет. Этот эффект можно увидеть на демонстрационных видеороликах.

4. Технология сварки титана аргоном.

Технология подразумевает использование вольфрамовых электродов и постоянного тока прямой полярности. В некоторых случаях к сварочному аппарату требуются дополнительные элементы, подающие инертный газ и вытесняющие воздух из сварочной зоны. Такие аксессуары бывают различных форм и размеров.

Допустимо использование стальных и медных подкладок с вырезанными отверстиями для подачи аргона. Для сваривания участков труб применяют специальные фартуки, подбираемые в зависимости от диаметра труб. В случае соединения внахлест или встык и при толщине металла не более 3 мм присадку можно не использовать. Достаточно настроить больший диаметр сопла и увеличить подачу газа.

 

Титановые детали варят короткой дугой с непрерывной подачей присадочной проволоки, плавными движениями без колебаний. После завершения сварочных работ желательно подавать газ еще в течение одной минуты для защиты шва от окисления в процессе остывания.

Технология сварки титана аргоном (видео):

5. Технология сварки меди аргоном.

Данная технология подразумевает использование смеси газов, состоящей из аргона (75 %) и азота (25 %). Соответственно, аргон придает дуге большую стабильность, а азот создает качественную сварочную ванну. Для соединения медных изделий требуются вольфрамовые лаптанированные (ЭВЛ) или итерированные (ЭВИ) электроды.

При соединении деталей из меди толщиной более 5 мм необходима разделка кромок, подобная той, что применяется в электродуговой сварке стальных труб. Такая необходимость продиктована высокой теплопроводностью меди – без предварительной разделки металл на всю толщину не прогревается. При этом если толщина его превышает 12 мм, требуется разделка обеих кромок соединяемых деталей, тогда как при толщине от 5 до 12 мм достаточно разделать только одну кромку.

Несмотря на достаточно сильную газовую защиту, часть кислорода все же попадает в сварочную зону. Поэтому для устранения последствий этого взаимодействия в качестве присадки полезно использовать материал, в составе которого имеется раскисляющее вещество (например, медную проволоку с добавлением большого количества марганца, вступающего в реакцию с кислородом).

Но применение марганца имеет серьезный недостаток: образующиеся в результате связывания кислорода соединения сильно снижают прочность шва и увеличивают его хрупкость. Данный недостаток устраняется при использовании присадки с добавлением редкоземельных металлов, которые удаляют из зоны контакта кислород и в то же время не влияют на качество шва, полностью исчезая в процессе реакции.

 

6. Технология сварки чугуна аргоном.

Технология сварки аргоном чугунных деталей позволяет добиться прочности шва, близкой к прочности самого чугуна. Но такой результат возможен лишь при соблюдении определенных условий. Основное из них – прогревать сварочную зону и затем охлаждать ее необходимо постепенно.

Благодаря медленному прогреванию изменяется структура чугуна и на его поверхности образуется графит, увеличивающий пластичность сплава. Во избежание попадания частиц другого металла в сварочную зону обычно применяют графитовые электроды или прутки. В некоторых случаях используют порошковую проволоку либо специальные пластины из чугуна.

По окончании сварочного процесса полученный шов постепенно охлаждается. Быстро это делать нельзя, в том числе используя для этого воду. Опытные специалисты рекомендуют засыпать сваренные изделия песком для сохранения качественного шва и его постепенного охлаждения.

Для сварки чугуна желательно использовать низкий сварочный ток. Это защитит от взаимного смешивания находящиеся в сварочной ванне детали.

7. Технология сварки бронзы аргоном.

Работа производится вольфрамовым электродом диаметром 3,5 мм. Для бронзы толщиной 1,4–2,5 мм присадка не нужна, а сварочные работы выполняются от постоянного тока с прямой полярностью либо от переменного тока с применением осциллятора.

В соответствии с данной технологией требуется необходимое количество аргона марки В, объем его определяется исходя из расхода 6–12 куб. дм в минуту. Перед началом работы под бронзовые детали нужно подложить медный лист. Детали соединяются между собой встык без зазоров. Практика показывает, что наиболее прочные швы получаются между деталями из отожженной бронзы.

 

Нужно учесть, что при сварке бронзы толщиной более 1,8 мм в местах соединения шва с основным металлом могут образовываться поры. Их возникновение связано с наличием в бронзе растворенных молекул водорода, поступающих из аргонной струи, а также с диффузией водорода из бронзовой основы внутрь шва.

Водород в составе воды может находиться как в аргоне, так и на поверхности металла. Кроме этого, поглощение бронзой молекул водорода происходит при ее отжиге в техническом газе, содержащем до 12 % водорода.

8. Технология сварки стали аргоном.

Перед сварочными работами необходимо в первую очередь отрегулировать положение горелки. Угол, образованный осью мундштука и плоскостью обрабатываемого металла должен быть в пределах 75–80 градусов. При этом горелку нужно наклонять в сторону, противоположную направлению сварки.

Движения в процессе сварочных работ должны быть плавными, без отклонений электрода за пределы зоны действия аргона, иначе шов может подвергнуться окислению. Присадочную проволоку следует располагать под прямым углом к оси мундштука. Таким образом, угол между прутком и плоскостью металла будет равен 15–20 градусов. Наиболее эффективно укладывать присадку на поверхность стали для минимизации капельного переноса присадки в сварочную ванну.

 

Присадочный материал необходимо продвигать впереди сварочной дуги, равномерно размещая его в сварочной ванне. Технология сварки аргоном не допускает поперечных движений присадочного прутка, так как это нарушает непрерывную подачу инертного газа в сварочную зону, а значит, и способствует проникновению кислорода в эту область. Для уменьшения расхода электрода рекомендуется не прекращать подачу газа по завершении сварочного процесса. Лучше выключить газ через 10–15 секунд с целью защиты горячего электрода от окисления и, соответственно, для продления его срока службы.

Почему следует обращаться к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

  • Сварочно-монтажные столы

    Сварочно-монтажные столы

    16мм System – множество применений Сборочно-сварочные столы System16 - функциональность и надежность Компания «ВТ-Металл» разрабатывает и собирает столы для сварки и сборки деталей. Кроме того, мы выпускаем всю необходимую оснастку к ним. Мы предлагаем оборудование, подходящее как для серийного производства, так и для небольшой мастерской, где создаются штучные изделия. При этом наши сварочно-монтажные столы используются и в строительстве, и в металлообработке, и в автомобилестроении – словом, там, где важна надежность результата, скорость и точность работ. Ведь разнообразие сварочной оснастки к столам позволяет создавать любые, даже самые сложные конструкции. А наш гибкий и нестандартный подход в сочетании с опытом в производстве такого оборудования позволяет предлагать лучшие решения на сегодняшний день. Цены на типовые размеры столов Размер столаНаименованиеСтоимость Сварочно-монтажный стол СМС - 500х1000 smsg-10051016 46 500 руб. Сварочно-монтажный стол СМС - 800х1200 smsg-12081016 82 000 руб. Сварочно-монтажный стол СМС - 1000х1000 smsg-10101016 85 000 руб. Сварочно-монтажный стол СМС - 1200х1200 smsg-12121016 119 000 руб. Сварочно-монтажный стол СМС - 1500х1000 smsg-15101016 123 500 руб. Сварочно-монтажный стол СМС - 1500х1500 smsg-15151016 181 250 руб. Сварочно-монтажный стол СМС - 2000х1000 smsg-20101016 162 000 руб. Сварочно-монтажный стол СМС - 2400х1200 smsg-24121016 240 000 руб. Сварочно-монтажный стол СМС - 3000х1500 smsg-30151016 358 500 руб. Набор №1 "Начальный" 18 предметов  n1-0101816 36 936 руб. Набор №2 "Базовый" 49 предметов  n1-0104916 93 062 руб. Набор №3 "Стандартный" 84 предметов  n1-0108416 164 266 руб. Набор №4 "Профессиональный" 117 предметов  n1-0111716 262 266 руб. Если вы не нашли приемлемый для вас размер стола, мы изготовим его на заказ. Производим сварочно-монтажные столы от 1000х500 до 3900х1900. ИНДИВИДУАЛЬНЫЙ ЗАКАЗ ВЫПОЛНИМ ЗА 14 ДНЕЙ Рассчитайте стоимость стола по индивидуальным параметрам Рассчитать стоимость   Характеристики стола System 16: СИСТЕМНОЕ ОТВЕРСТИЕ 16мм ТОЛЩИНА МАТЕРИАЛА от 10мм  до 12мм БОКОВАЯ СТЕНКА - высотой 100 мм - расстояние между отверстиями 50 мм - шаг матричной сетки 50 мм Высота опор  750 мм НАГРУЗКА на 4 опоры = 2.000 кг на 6 опор = 3.000 кг РЕБРА ЖЕСТКОСТИ Множественные ребра внутри стола служат для обеспечения большей стабильности и точности  Универсальность – одно из главных отличий сборочного стола для сварки от «ВТ-Металл». Объединяя различные элементы: плиты, опоры, детали оснастки для сварки – вы можете создать целый комплекс, решающий именно ваши задачи. С помощью 16мм системы возможно производство различных изделий. Причем, перенастройка оборудования для создания новых деталей, как и для внесения изменений в конструкцию уже существующего изделия, делается очень легко и быстро. Множество вариантов использования, благодаря оснастке различных типов, делает это оборудование незаменимым, позволяя организовать полноценное производство с минимумом вложений.
  • Навесные кронштейны

    Навесные кронштейны

    Навесные кронштейны Создание вентилируемых фасадов невозможно без монтажных кронштейнов. Главное назначение этих элементов – воспринимать действующую нагрузку и передавать ее к несущей конструкции строения. Правильно выбранный кронштейн для навесных фасадов обеспечивает надежность и безопасность всей системы. На общую прочность конструкции влияют следующие факторы:   вес облицовочных элементов; отклонение поверхности стены от вертикали; величина вылета; шаг размещения кронштейна в навесном фасаде. Еще одно назначение данных элементов – крепление на стене оборудования и иных тяжелых предметов. Такой кронштейн для навесных агрегатов должен выдерживать тяжесть устройства, обеспечивать удобство обслуживания, поэтому его следует заказывать только у проверенных изготовителей. Наша компания предлагает комплексный набор услуг по изготовлению металлических изделий простых и сложных конструкций. Благодаря новейшим станкам с программным обеспечением, использованию лазерной резки мы имеем возможность быстро изготовить необходимое количество навесных кронштейнов. Вы можете заказать у нас как стандартные конструкции, так и детали, изготовленные по чертежам, разработанным индивидуально. Мы гарантируем достойное качество работы соответственно Вашим требованиям. Чтобы сделать заказ, Вы можете обратиться к нам по телефону +7(495) 960-62-45 или написать по адресу info@vt-metall.ru
  • Фасадные кронштейны

    Фасадные кронштейны

    Фасадные кронштейны Кронштейны на фасаде предназначены для закрепления несущего профиля на внешней стене. Их размеры, материал и конструкция зависят от структуры поверхности и материала облицовки. Кронштейн выполняет основную несущую функцию. Поэтому от того, насколько правильно он выбран, в конечном итоге зависит надежность всей фасадной системы. Изготовление таких элементов является одним из ведущих направлений производственной деятельности компании Vt-metall. Изделия нашли применение в следующих сферах: в строительной индустрии, архитектуре. В качестве кронштейнов для фасадных систем используются изделия из алюминия и оцинкованной стали. Наша компания производит оба вида перечисленных деталей как стандартных размеров, так и по чертежам заказчика. Фасадный кронштейн из оцинкованной стали Фасадные кронштейны с оцинкованной поверхностью используются в стальных системах, где все они являются несущими, независимо от расположения. Таким образом, вес облицовки равномерно распределяется по всей площади. Коэффициент теплового расширения стали сравнительно невелик (9,9 Х 10-6 м/мК против 22,2 Х 10-6 м/мК у алюминия), поэтому все соединения надежно зафиксированы, не имеют термических швов. Наша компания изготавливает оцинкованные кронштейны из металлических листов, после чего на поверхность деталей гальваническим методом наносится антикоррозионный слой цинка. Благодаря такому защитному покрытию детали получают устойчивость к внешним атмосферным воздействиям и коррозии. Мы предлагаем нашим клиентам различные стальные кронштейны для фасадов. Наиболее прочными являются детали с двумя ребрами жесткости, выдерживающие значительные нагрузки на изгиб. Одной из наиболее востребованных конструкций является «Сканрок». Благодаря продуманному строению он при малой толщине (1−2,5 мм, стандарт – 1,2 мм), может использоваться при навешивании тяжелой облицовки (керамогранита, стальных кассет, фиброцемента) в одно- и двухконтурных фасадных системах. Жесткость крепления узлов обеспечивается заклепками и/или саморезами. Фасадный кронштейн из алюминия Такой кронштейн изготавливается из алюминиевых сплавов, обладающих необходимым запасом прочности. Он нашел основное применение в обустройстве вентфасадов с алюминиевой подсистемой. В зависимости от положения в конструкции элемент может быть ветровым или несущим, что влияет на его вид и расположение/форму отверстий для крепежа. Проконсультироваться с нами, чтобы заказать, выбрать или купить фасадные кронштейны, можно по телефону +7 (495) 960-92-45 или электронному адресу info@vt-metall.ru.

 

Получите консультацию нашего специалиста:

Задавайте свои вопросы или закажите предварительный расчет стоимости работ,
чтобы убедиться – у нас доступные цены и оперативное исполнение

Акция